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Several studies in recent years have drawn attention to the

ability of proteins to adapt to intermolecular interactions by

conformational changes along structure-encoded collective

modes of motions. These so-called soft modes, primarily driven

by entropic effects, facilitate, if not enable, functional

interactions. They represent excursions on the conformational

space along principal low-ascent directions/paths away from

the original free energy minimum, and they are accessible to the

protein even before protein–protein/ligand interactions. An

emerging concept from these studies is the evolution of

structures or modular domains to favor such modes of motion

that will be recruited or integrated for enabling functional

interactions. Structural dynamics, including the allosteric

switches in conformation that are often stabilized upon

formation of complexes and multimeric assemblies, emerge as

key properties that are evolutionarily maintained to accomplish

biological activities, consistent with the paradigm

sequence ! structure ! dynamics ! function where

‘dynamics’ bridges structure and function.
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Introduction
With the accumulation of structural and dynamic data and

the rapid advances in the visualization of the spatio-

temporal dynamics of protein–protein interactions [1]

as well as the conformational dynamics of proteins in

living cells [2], and with the availability of efficient

models and methods for analyzing structural dynamics

and allostery [3,4��,5], there is increasing support for the

significance of structure-encoded dynamics as a major
www.sciencedirect.com 
determinant of protein–protein and protein–ligand inter-

action mechanisms.

Structure-encoded dynamics, also called intrinsic dy-

namics, represents the conformational motions, or the

spectrum of modes, uniquely defined by the 3-dimen-

sional structure. The most favorable modes, also called

‘soft modes’ are usually distinguished by their coopera-

tivity, hence their involvement in allosteric switches or

global changes in structure [3,4��,6]. The functional

significance and robustness of these modes of motions

suggest new design and engineering principles, such as

the need to enjoy suitable conformational flexibility, or

substrate adaptability, rather than a high stability exclu-

sively. Conformational flexibility appears to be essential

to optimizing protein–substrate interactions [7,8], en-

abling allosteric responses [9] or mediating multispeci-

ficity [10–12]. In line with these concepts, the intrinsic

dynamics of proteins is emerging as a factor closely

related to the evolutionary selection of structures

[13,14��,15�].

We present here recent studies, in support of the signifi-

cance of structural dynamics in determining binding

geometry, assembly and/or oligomerization mechanisms

and facilitating allostery. We also highlight recent work

on the relationship between the evolutionary selection of

structures and their intrinsic dynamics.

The functional motions of proteins are not
random: they are robustly favored by the
structure
Proteins engage in many complex interactions in the

cell. These are usually accomplished by changes in their

structure, varying over a broad range, from highly local-

ized movements at the level of single-residues, to co-

operative rearrangements of multiple domains or

subunits. While conformational changes have been

broadly described as ‘wigglings and jigglings’, this de-

scription falls short of reflecting the cooperative nature

of many functional interactions. In particular molecular

machines require precise integration of functional

movements (often driven by ATP binding). Increasing

evidence supports the propensities of many complexes

and assemblies to undergo non-random changes in their

structures. These changes are usually predictable by

simple models such as elastic network models (ENMs)

which take account of the cooperative nature of biomo-

lecular dynamics [16].
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18 Protein–protein interactions
A few principal modes of motion, also called
soft modes, mediate intermolecular
interactions
The old concept of a single ‘native’ structure has long

given way to that of an ‘ensemble of substates in the

native state’ which usually share the same fold. The

protein essentially samples a multitude of conformers,

which are transiently stabilized during its biological ac-

tivity. These conformers are accessible through local

changes in structure (e.g. loop motions or side chain

rotations) or global rearrangements (domain/subunit

movements). Yet, these are all ‘native’ substates for a

given protein, the relative probabilities of which change

under different conditions, or at different stages of the

biological processes (e.g. allosteric cycle) in which they

take part, or in the presence or absence of their natural

substrates — a phenomenon usually referred to as ‘con-

formational shift’. Such shifts between pre-existing states

may also occur due to mutations. There is increasing

attention on the opportunities (and limitations) of modu-

lating conformational shifts for controlling binding affini-

ties and/or biomolecular functions [17].

An important observation is that these different confor-

mers are along a few ‘principal modes of motion’ intrinsi-

cally accessible to the fold that they share [3,4��,18–21].

One of the early studies demonstrating that experimen-

tally observed structural variations simply represent

reconfigurations of different sizes along one or two prin-

cipal modes encoded by the structure is that of de Groot,

Gresinger and coworkers [22] for ubiquitin. This highly

versatile protein adopts a variety of conformations while

binding its substrates, and these are simply those sampled

along one or two principal directions of motions accessible

to the unbound ubiquitin, also seen by NMR residual

dipolar coupling. A more recent example is the single-

molecule Förster resonance energy transfer analysis of

phosphoglycerate kinase (PGK) dynamics by Fitter and

coworkers [23�]. In that study, Fitter and coworkers

elegantly showed that first, the experimentally detected

functional (hinge-bending) motions of the enzyme are

encoded by the fold, as predicted by ENMs, and second,

those motions are already performed in the ligand-free

state of PGK domains, before substrate-binding.

Soft modes define pre-existing pathways of
reconfiguration selected for modulating
binding, assembly or multimerization
For a better visualization of the conformational space and

accessible conformers, let us consider the free energy

surface in Figure 1. The surface depicts the most favor-

able region, or the global minimum, of a much broader

energy landscape. In principle, the protein (P) would sit at

the lowest energy well, for example, position ‘2’ on the

landscape. But because of the different crystallization

conditions and the inherent conformational flexibility

of P, the structures resolved for P (as well as the models
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determined by NMR) would be distributed in the vicinity

of this well. The conformers designated as ‘1’–‘6’ display

such alternative structures, or substates of the native state.

The important observation, from experiments and com-

putations, is that these substates are not randomly dis-

tributed in space, but more or less aligned along a few

principal directions of reconfiguration and these direc-

tions are nothing else than the soft/principal modes of

motions accessible to P.

The soft modes may therefore be viewed as pre-existing

paths or valleys on the conformational energy landscape,

away from the lowest energy minimum [24]. Some are

steeper; others are easy or soft. In the same way as these

regions will be the first to be flooded when there is a rise in

the water level, these modes are the first to be ‘recruited’

in response to a perturbation (substrate binding, muta-

tion, etc.). In other words, the conformational changes

undergone by the protein upon formation of multimers or

complexes with different substrates (S1–S3), or in the

presence of mutations (M), schematically illustrated in

the last row (Figure 1) are simply those conformers

already accessible to the (unbound) protein via deforma-

tions along its softest modes/paths.

In summary, the emerging picture is the following. The

alternative structures resolved for a given protein — for

example, ligand-bound/unbound, active/inactive, open/

closed, outward-facing/inward-facing, or at different

stages along an allosteric cycle — usually represent sub-

states accessible via soft modes [18,21,25,26] predictable

with the help of physics-based approaches such as ENMs

and normal mode analysis [3,4��]. Excursions on the

conformational energy landscape thus define the type

of substates accessible to the protein to adapt to its

interactions. Allosteric effects often arise by triggering

or altering these pre-existing modes upon ligand binding.

We present here a few recent studies supporting these

concepts: Dima and coworkers showed that the confor-

mational diversity attained via excursions on the confor-

mational landscape underlie the mechanosensing

functionality of a muscle anchoring complex observed

in atomic force microscopy (AFM) [27]; Gur et al. showed

that the reconfiguration of adenylate kinase between its

open and closed forms upon ligand binding takes place

along such valleys of the conformational space [28].

Further, the conformational pathways described by a

single mode starting from the open state were shown

to successfully predict the closed state for a set of proteins

that undergo large hinge-bending motions [29]. Shi and

coworkers showed that the changes induced by Na+

binding on the intramolecular interaction network corre-

late well with the principal mode of motion intrinsically

accessible to the dopamine D2-like receptor [30]. Simi-

larly, an evolutionary conserved interaction network was

shown to connect Na+ binding to global conformational
www.sciencedirect.com
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Figure 1
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Schematic representation of conformers accessible to a given protein under physiological conditions, and pre-disposition to bind different

substrates or favor different multimerization states. The energy landscape in the middle represents the vicinity of the native state or global energy

minimum for a hypothetical protein P. It represents the projection of this region onto the subspace spanned by two principal coordinates, PC1 and

PC2. Numbers 1–6 on the surface depict the location of various structures, or substates that might be resolved for the same protein. They would

be distinguished by the type and extent of rearrangements between the two subunits (colored red and blue) of the protein. There is a series of

conformers along PC1, differing in the extent of ‘opening’ of the cleft between the two subunits, from the most compact (labeled ‘1’; leftmost) to

the most exposed (‘5’, rightmost), predisposed to bind different substrates (S1–S3). Structure ‘6’ shows a different inter-subunit packing

arrangement, for example, a twisting motion, defined by PC2. Some of the structures are pre-disposed to form multimers (e.g. ‘4’ favors dimer

formation, and ‘6’ favors hexamer formation). The mutant M structure resembles an already accessible structure (‘2’). Thus, the protein may

accommodate different substrate binding (multispecificity) or adapt to different oligomerization states by reconfigurations along two principal

coordinates. PC1 and PC2 are generally along the two softest modes intrinsically accessible to P, predictable ENM analysis. The soft modes thus

represent pre-existing directions of structural change, probabilistically accessible under equilibrium conditions, and can be selected for mediating

ligand binding, mutations or oligomerization.
changes crucial to neurotransmitter transport [31]. The

transition of aspartate transporter between inward-facing

and outward-facing states is essentially accommodated

by a single mode predicted by the ENM in the presence

of membrane environment [32]. Modulation of soft

modes underlies allosteric regulation in CRP/FNR fami-

ly of transcription factors [33–35]. Residues acting as

hinges in the softest mode of ASC protein allosterically

modulate the binding surface to promote the formation of

ASC speck assembly [36�]; CO2 binding stabilizes the

open form of connexin26 by interfering with the softest

mode accessible to the protein (which otherwise drives

the opening/closing of the hemichannel) [37]. ENM

modes that enable the contraction/dilation  of the extra-

cellular vestibule in a series of GPCR family members

correlate with the formation of the cavity for G-protein

binding on the intracellular side [38�]. Also, the global

modes of motion provide mechanistic insights into how

the function of voltage-gated potassium channel Kv7.1 is
www.sciencedirect.com 
regulated by the binding of its auxiliary  subunit KCNE

[39]. Finally, the binding of the transactivation domain of

MLL protein and c-Myb to CREB KIX domain is en-

abled by reconfiguration along soft modes [40].

Binding is mediated by not only local
interactions but global dynamics that alter
surface properties and regulate allosteric
responses
Several observations point to the interplay between sta-

bility and dynamics in shaping protein’s binding land-

scape. The significance of shape complementary and local

physiochemical characteristics is well-established. But

binding is not necessarily a local phenomenon. It also

entails global changes in conformation that may allosteri-

cally alter surface properties at distal regions. Examples

are pre-existing structural fluctuations that expose bind-

ing epitopes or drive the formation of a cavity for substrate

binding [41�], stabilization of the selected conformational
Current Opinion in Structural Biology 2015, 35:17–23
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shift that enables binding and controls the binding affinity

[17], or the modulation of the global dynamics upon

complex formation [33].

We anticipate that design studies that involve substrate

binding will increasingly require a thorough understand-

ing of the nature of the global modes accessible to the

unbound protein, in addition to the usual examination of

its structure and surface properties. On a local scale,

protein–protein interfaces show dynamic patterns with

distinct thermal fluctuations [42]; on a global scale, allo-

steric changes in structure may explain some of the

entropic gain in binding [43]; a distant mutation that

induces a large conformational change may disrupt the

dimerization of an enzyme [44]; or, the functional effect

of N-glycosylation is not through changes in protein

structure but decreases in protein dynamics, and an

increase in protein stability modulates the oligomeriza-

tion and aggregation states of the glycosylated protein

[45]. Likewise, a nucleotide-mimetic was shown to mod-

ulate the oligomerization state of the oncoprotein reptin

by altering its global conformation and protein-binding

activity [46�]. Finally, an approach based on the maximi-

zation of information entropy change associated with the

global modes between bound and unbound structures

significantly helps in distinguishing the native protein

complex structures from the designed complex structures

[47].

Triggering or altering of pre-existing dynamics
is a means of modulating biological activity
Proteins present key sites that have the capacity to trigger

or alter global modes of motion. Hinge regions are such

sensitive sites [3,29]. Hinge-bending and large twisting/

untwisting motions are common mechanisms of allosteric

regulation, as shown in numerous ENM applications.

Enhanced hinge flexibility facilitates kinase activation

[48]; conversely, substrate coevolution in HIV-1 protease

restore the hinge axis deformed by drug resistant muta-

tions, highlighting the functional importance of hinge

motions [49]. Allosteric hot spots constitute another group

of target sites that modulate protein–protein interactions

[50]. Notably, an allosteric inhibitor recently discovered

for neuropeptidases presumably disrupted activity by

preventing a hinge-like motion associated with substrate

binding and catalysis [51�]. In some cases, key sites may

be on the surface, for example, some residues serve as

sensors, and others as effectors for efficiently sensing and

rapidly communicating perturbations. A recent study

invited attention to such residues on the ATPase domain

of Hsp70, which mediate interdomain allostery [52�]. In

the case of the PyrR family of pyrimidine operon attenua-

tors, key mutations all distant from the interface and

outside ligand-binding pockets were identified to control

the oligomeric state; these mutations introduced struc-

tural changes comparable to the conformational shift

observed between the unbound and nucleotide-bound
Current Opinion in Structural Biology 2015, 35:17–23 
conformations of the protein [14��]. Distant dynamic

couplings between variable (VH) and constant (CH2)

domains and the hinge region (CH1–CH2 interface) were

also observed within an IgG1 monoclonal antibody during

its reversible self-association [53]. Allostery through DNA

is also an important modulator of DNA functions; the

coalescence of protein-induced DNA bubbles was sug-

gested to regulate DNA’s flexibility and the assembly of

the transcription machinery [54]. Binding of an antibiotic

60 Å away from the DD-transpeptidase active site has

been shown to allosterically stimulate the opening of the

active site, predisposing the penicillin binding protein 2a

to inactivation [55].

Evolution of sequences and structures to
enable intrinsic dynamics in favor of
functional interactions
Emphasis in classical studies has been on the requirement

to conserve biochemical (e.g. catalytic) activity and over-

all stability, and on the evolution (or conservation) of

amino acids to ensure them. However, with the emer-

gence of structural dynamics as a major determinant of

mechanisms of interaction, it is clear that the conservation

of the conformational mechanics (not only chemistry) is

another equally important evolutionary requirement.

ENM-based normal mode analyses have helped elucidate

the shared dynamics of homologous proteins starting from

the original work of Echave and coworkers [56] and Ortiz

and coworkers [57]. An important observation has been

the correlation between the structural core change among

family members (for a series of protein families) and the

soft modes intrinsically favored by the shared architecture

of family members [57]. A more recent study helped

elucidate the conserved ENM modes crucial to the

switching function of Ras GTPase family, as well as

the modes specific to particular family members [58].

Systematic study of sequence conservation patterns and

conformational mobilities demonstrate that regions that

enjoy higher conformational mobility are also sequential-

ly variable, and vice versa [59,60]. Furthermore, not only

conserved residues, but also co-evolving pairs of residues

are of interest toward gaining a better understanding of

the functional interactions (intramolecular or intermolec-

ular) that are presumably maintained by compensating

mutations. These analyses clearly demonstrate that co-

evolving pairs of residues relate to 3-dimensional contacts

[59,61–65]. Furthermore, coevolving pairs of residues

often populate conformational flexible regions such as

substrate-recognition sites [52�,59,66��], suggestive of the

need to modulate specificity by sequence coevolution.

Finally, proteome-wide analysis of conformational dy-

namics indicates that the interface sites enriched in

disease-associated non-synonymous single nucleotide

variants play a crucial role in functional dynamics [67].

It remains to be seen if such studies can assist in the

identification of allosterically coupled sites and in the
www.sciencedirect.com
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design of allosteric inhibitors. Efforts to push forward

these efforts combined with druggability considerations

[68] may open new avenues for identifying potential sites

for allosteric regulation.

An interesting observation is that pathways of assembly

are also under evolutionary pressure [13,69]. In a recent

review, Marsh and Teichmann emphasized how local

protein flexibility and disorder, as well as large-scale

motions and quaternary structure assembly correlate with

evolutionary changes in protein sequence and structure

[70]. Electrospray mass spectroscopy experiments show

assembly intermediates that are in accord with those

observed evolutionarily [13]. Teichmann and coworkers

also showed that the conformational changes allosterically

induced by selected mutations (called allosteric mutations)
are similar to those stabilized upon ligand binding or by

intersubunit geometry changes occurring upon oligomer-

ization [14��]. This observation again highlights the in-

trinsic preferences of the original structure to undergo

changes along well-defined (soft) modes of deformation,

as illustrated in Figure 1. The relationship between

intrinsic dynamics and evolution appears to be twofold:

evolution selectively maintains the structures that lend

themselves to functional intrinsic dynamics, and evolu-

tion employs the intrinsic dynamics of the protein to

promote allosteric switches or oligomerization mecha-

nisms.

Conclusion
A wide range of events/processes implicated in a given

protein’s interactions, function and evolution appear to

proceed via similar mechanisms: allosteric response of the

protein to specific substrate binding, its structural changes

triggered or stabilized by ligand-binding or drug-binding,

its evolutionarily selected modes of assembly or oligo-

merization. Our current understanding is that these are

‘similar’ because they represent all excursions along a few

dominant directions on the energy landscape: the soft

modes of motions uniquely defined by the protein archi-

tecture. Methods that exploit the intrinsic dynamics of

proteins are probably to open the way to new strategies

that for design, discovery and therapeutics.
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