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ABSTRACT The dynamic rotational isomeric states (RIS) model recently developed for investigating local 
chain dynamics is further improved and applied to poly(ethy1ene oxide) (PEO). In general, a set of eigenvalues 
AI, j = 1 to Y *, characterizes the dynamic behavior of a given segment of N motional bonds, with v isomeric 
states available to each bond. The eigenvalues may be identified as the frequencies of the individual modes 
contributing to local chain relaxation. To calculate orientational autocorrelations, time correlations, and/or 
power spectra, Ais are combined with the weighting factors k, which are determined by the equilibrium statistics 
of the chain and the specific property investigated. The rates of transitions between isomeric states are assumed 
to be inversely proportional to solvent viscosity, leading to a linear dependence between viscosity and correlation 
times. Predictions of the theory are in satisfactory agreement with the isotropic correlation times and spin-lattice 
relaxation times from *3C and 'H NMR experiments for PEO in a variety of solvents. An activation energy 
of about one barrier height is theoretically calculated, in agreement with previous experimental studies. 

I. Introduction 
In a series of p a p e r ~ , l - ~  local chain dynamics was in- 

vestigated by using the dynamic rotational isomeric states 
(RIS) approach based on a model first proposed by Jer- 
nigan.5 The most important advantage of the theory is the 
fact that real chain characteristics such as the molecular 
structure and the configurational statistics are incorporated 
into the calculations. The time dependence of orienta- 
tional and conformational correlations is accordingly 
computed for specific vectorial quantities rigidly embedded 
in short segments of real chains subject to conformational 
transitions. Calculations performed for polyethylene (PE), 
the simplest polymeric chain, support the use of the dy- 
namic RIS model as a tool of investigating local chain 
dynamics. In fact, the stochastics of conformational 
transitions predicted by the theory are in reasonable 
agreement with related Brownians simulations. The the- 
oretically obtained decay of the orientational autocorre- 
lation functions (OACF) with time may be fitted4 to a good 
approximation by previously proposed functional forms, 
the Hall-Helfand' and Bendler-Yaris8 expressions, in 
particular. That an activation energy of about one barrier 
height (between isomeric states) is associated with con- 
formational transitions in n-alkanes is confirmed2 by the 
theory, in agreement with NMR measurement by Matsuo 
and S t~ckmayer .~  

As relatively short segments in motion are considered 
in the theory due to computational limitations, the theory 
seems particularly useful for interpreting high frequency 
relaxations involving correlation times of the order of 
10-12-10-10 s. Such fast motions are measured in NMR 
experiments, in particular. 

In the present study, the dynamic RIS formulation is 
improved such that a discrete set of eigenvalues governing 
the stochastics of conformational transitions is readily 
obtainable for the specific segment considered. The ei- 
genvalues may be identified with the frequencies of various 
modes contributing to relaxation. They are used in the 
calculation of the correlation times, the OACFs, and their 
Fourier transforms, i.e., the spectral densities. 

In the next section, the improved formulation of the 
dynamic RIS model is presented and the application of 
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the model to poly(ethy1ene oxide) (PEO) is outlined. 
Calculations of the OACFs and the spectral densities are 
illustrated in section 111. Predictions of the theory are 
compared in section IV, with the correlation times and 
spin-lattice relaxation times measured in 13C NMR and 
'H NMR experimentslWl3 with dilute PEO solutions. The 
concluding remarks are presented in section V. 

11. Theory 
Stochastics of Conformational Transitions. The 

master equation for conformational transitions in a se- 
quence of N skeletal bonds in motion is 

(1) 

where P(N) is the column vector of the instantaneous 
probabilities of the 3N configurations available in the se- 
quence, on the premises of three states per bond. A(" is 
the 3N X 3N transition rate matrix which is constructed 
according to a suitable kinetic scheme depending on the 
specific configurational characteristics of the polymer 
considered. For a sequence in which the simultaneous 
transitions of two neighboring bonds are correlated, the 
matrix AcN) appearing in eq 1 takes the following form: 
AcN)  = A(z)l,2 8 I, 8 I3 8 ... 8 I, + 

I, 8 A(2j2,3 8 I, 8 ... 8 I, + ... + I, 8 I, 8 I, 8 ... 8 

A(2)N-1a = XI,  8 I, 8 

dP(N )( t )  /dt  = A")P" ' ( t )  

N- 1 

]=I 
8 I, 8 ... 8 I, (2) 

Here 0 indicates the direct product and A(2)lj+l is the 
second-order transition rate matrix for a pair of neigh- 
boring bonds whose dynamics are correlated. Further 
discussion for constructing A@), +' for PEO is given below. 
I, is the identity matrix of order 3. 

The solution to eq 1 can be written in terms of the 
eigenvalues and eigenvectors of AcN) as 

(3) 

(4) 

where L(" is the diagonal matrix composed of the ei- 

P(N ' ( t )  = B ( N )  exp(L" ) t ] [ B  ( N  )]-lP(N)(0) 

A(N ) ( t )  = B ( N  )L(N)[B ( N  )]-I 

using 
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genvalues A j ,  j = 1, 3N, of A(N), and B") is the matrix 
whose j t h  column is the eigenvector associated with A,. 
[B(N) ] - l  is the inverse of B"). It should be noted that 
one of the eigenvalues, say X1, has to be equal to zero in 
stationary processes to ensure the convergence of P")(t) 
to equilibrium values, P(N)( a). Furthermore, for processes 
where the principle of detailed balance applies as in the 
present case, all of the nonzero eigenvalues are strictly 
negative, rather than some of them being c~mplex. '~ The 
product exp{L(N)tJIB(N)]-l defines the conditional 
or transition probability matrix C")(t). The ijth element 
Ci.") denotes the probability of Occurrence of configuration 
{@{i at time t ,  for a sequence of N bonds in motion, given 
the initial configuration { @ } j .  Here {@)i, i = 1,  3N, refers to 
a set of isomeric states characterizing a given configuration. 
Similarly the 3N X 3N symmetric matrix P")(t) is given 
by1s5 

( 5 )  

O N ) ( t )  = B") e ~ p { L @ " t } [ B ( ~ ) ] - ~  (6) 

PcN)(t) represents the joint probability matrix whose ijth 
element denotes the joint probability of occurrence of two 
configurations, {@I. and {@},, within a time interval t. PcN)(t) 
or alternately C( iv ) ( t )  fuhy describes the conformational 
stochastics of the segment of N bonds subject to Brownian 
motion. In component form, eq 5 reads 

P(N)(t)  = C("(t) diag P("(0) 

with 
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distribution of configurations is conserved and hence 
PcN)(t)  is always given by the same column vector P("(0) 
dictated by equilibrium statistics, regardless of the time 
argument. However, although the probability P@"(t) is 
independent of time, the joint probability P")(t) of two 
different configurations for a given segment, with a time 
interval t ,  depends on t ,  inasmuch as the system is a dy- 
namic one and any sequence is continuously subject to 
conformational transitions. 

The elements of P ( N ) ( t )  may be used as stochastic 
weights to determine the transient behavior of any con- 
figuration-dependent property. For instance, the OACF 
related to the initial and final orientations of a vector m 
rigidly embedded in the sequence in motion may be found 
from 

Ml(t) = (m(O).m(t)) (15)  

M l ( t )  = C C(P")i;(t)[mi.mjIJ (16) 
i l  

and 

M,(t) = (3/2[m(0).m(t)]2 - 1 / 2 )  

M&) = C E(P(N)ij[3/2(mi.mj)2 - 1 / 2 1 }  

(17)  

(18) 

Here M l ( t )  and M,(t) are referred to as the first and 
second OACFs, respectively. The above equations may be 
generated for any property fi, which is a function of the 
configurations (@Ii and {@)> The ensemble average of f i j  over 
all possible conformational transitions is given by 

i j  

(fi j)  = E CP")ij(t)fij (19) 

( f i j )  = C k n  exp{A,tl 

i I  

3N 

(20) 
n = l  

where 
3N 3N 

j = 1  i=l 
kn = C CB'N)in[B(N)n;]-lP(N)j(0)fij ( 2 1 )  

Equations 20 and 2 1  directly follow from eq 7 and 8. 
Substitution of fi; in eq 19-21 by (mi.mj), for example, 
yields Ml( t ) ,  as apparent from eq 15 and 16. It  should be 
noted that kn depends on the molecular structure and the 
equilibrium statistics of the chain and on the specific 
quantity f i j  investigated. Thus, kn is independent of time. 
All the time dependence of P ( N ) ( t )  and consequently 
( f i j ( t ) )  is accounted for by the eigenvalues, as pointed out 
above. 

Equations 20 and 21 offer a convenient form for trans- 
formation into the frequency domain. Accordingly, the 
spectral density function, which is the Fourier transform 
of the OACF, may be found from 

(7) 

with 

c ( N  )nk( t )  = E B  (N)n j  exp{Ajt) [B  ( N  'jk1-l (8) 

The subscripts n and k index the elements that are 

Let us investigate the two limiting cases t = 0 and t = 

(i) When t = 0, eq 8 leads to 

associated with configurations { @ I n  and/or {&. 
m ,  according to eq 7 and 8. 

C " ) n k ( O )  = bnk (9) 

P c N ) n k ( 0 )  = 6 n k P ( N ) k ( 0 )  (10) 

as expected and consequently 

where bnk is the Kronecker delta. 
(ii) As t - m ,  all of the terms in eq 8 vanish (since Ai's 

are negative) except for the one with the zero eigenvalue 
A1, such that 

P'*)nk(  m, = c " ) n k ( m ) P ( N ) k ( 0 )  

- - B ( N  )nl [B ( N  ) l k ] - l f i N  ) k ( O )  ( 1  1 )  

On the other hand, as t - a, the events of occurrence 
of configurations (@Ii and ( @ ) j  become independent; i.e., 

P ( N ) n k ( m )  = P " ) n ( m ) P ( N ) k ( 0 )  ( 1 2 )  

or 

C ( N ) n k ( m )  = P ( N ) n ( m )  (13)  

From the comparison of eq 11 and 12, it follows that the 
equilibrium probabilities may be found from the elements 
of BcN) and [ B ( N ) ] - l  associated with the zero eigenvalue 

P")n(m) = B ( N ) n l [ B ( N ) l k ] - l  (14)  

It should be noted that [B(N) ] lk - l  is constant for all k; 
i.e., the subscript k is immaterial. Also, for stationary 
processes, if P("(0) is set equal to P(N)(m), the equilibrium 

A1, as 

3N 

j=l 
J ( w )  = J m M 2 ( t )  exp{iwt) dt = - [ E k , A j / ( w z  + A t ) ]  

( 2 2 )  

The correlation time T that characterizes the time scale 
for the decay of the autocorrelation function Mi( t )  (i = 1 
or 2) is defined15 by 

T = J m [ M i ( t )  - Mi(m)][Mi(O) - M i ( c 0 ) l - l  dt ( 2 3 )  

From eq 20, Mi( t )  may be written as a sum of expo- 
nentials; i.e., 

3N 

;=l 
Mi( t )  = x k j  exp(ijt) (24) 
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Chart I 

0 0 0 0 0 -r-4 - I - 
-2r2 0 0 r-2 0 0 r+ 0 0 
0 -r4 - r5 0 0 r4 0 0 r_5 0 
0 0  -r5 - r4 0 0 r-5 0 0 r-( 
r2 0 0 -r-2 0 0 0 0 0 
0 r-4 0 0 - r g O  0 0 0 
0 0  r5 0 0 -r-5 0 0 0 
72 0 0 0 0 0 -r-2 0 0 
0 r5 0 0 0 0 0 -r-5 0 
0 0  r-4 

tg-  & t t  tg+ 

r 4 l l r - .  r - 2 ] i r 2  

9-9- '3 g-t 9-9+ 

r -  1 r -  1 

r -  3 r -  8 

Initially Mi(0) = 1. A t  t = m ,  all of the terms in the 
summation vanish except for k l  exp(Xlt), recalling that X1 
is the zero eigenvalue. Thus, eq 23 becomes 

m 3 N  

7 = [ s k ;  exp(Xjt)](l - kJ1 dt = 

3 N  3 N  

]=2 1=2  
-(1 - kl)-'C(kl/X1) E -[Ckl/X1] (25) 

The last equality holds if kl << 1. 
Kinetics of Conformational Transitions in PEO. 

The kinetic scheme for conformational transitions in PEO 
(-CHzCHzO-) is different from the one proposed' for PE. 
In chains with identical skeletal bonds like PE, the states 
tg+ and g+t are indistinguishable from the point of view 
of prevailing configurational energy of interaction, since 
the same first-order interaction parameter applies to both 
adjacent bonds, whereas in PEO different energies are 
associated with those two states. The kinetic Scheme I1 
of ref 1 is now replaced by Scheme I where rl and r-r (i = 
1-6) are the rate constants corresponding to the indicated 
transitions. They are represented by Arrhenius-type ex- 
pressions, with activation energies or energy barriers E , ,  
deduced from the heights of the saddles between isomeric 
minima in the two-dimensional conformational maps, as 

r1 = A0 expI-E*,,/RT1 (26) 

where R is the gas constant and T is the absolute tem- 
perature. The front factor A. is given by 

A. = (yy *)1/2/2a{ (27) 

following Kramers' expression16 for high friction medium. 
Here { is the friction coefficient, y and y * are the force 
constants associated with the shape of the potential wells 
and barriers, respectively. In view of the lack of detailed 
information on those parameters, the front factor will be 
kept as a constant for all conformational transitions. A 
similar approach is commonly used in the equilibrium 
statistics" of macromolecules, where the shape of the en- 
ergy minima is not considered, except for a few refined 
treatments. By use of Stoke's law for the friction coeffi- 
cient, A, is assumed to be inversely proportional to solvent 
viscosity, as a first-order approximation. 

As may be seen from the above kinetic scheme, the 
allowable transitions involve rotations of either the left or 
the right bonds of the pair. Accordingly, A(2)1,1+1 in eq 2 
may be decomposed into two components, AL and AR, 
representing the transition rate matrices of the left and 
right bonds of the pair, respectively. AL and AR are given 
by Charts I and 11. By the use of AL and AR, A(2)1,1+1 may 
be expressed as 

AL+AR/2 1 = 1  

' / ~ [ A L  + AR] 1 C 1 < N - 1 (28) 
A L / ~  + AR 1 = N - 1 

Chart I1 

--2r1 r-l r-l 0 0 0 0  
rl -r..l 0 0 0 0 0  
rl 0 -r-l 0 0 0 0  
0 0 0 -r4 - r3 r-3 r6 0 0 0  
O O O r 3  -r-3 0 0 
0 0 0  0 -rs 0 

0 0 0 0  0 0 rd 
0 0 0 0  0 0 r3 

0 0 -rd - r3 r6 r-3 

- 

0 0 0 2  

By introducing the factor ' I 2  in eq 28, a representative 
average rate is adopted for the rotation of a given bond 
i which is simultaneously a member of the pairs (k1,i) and 
(i,i+l). The present, more rigorous formulation of A@)j,j+' 
replaces the one given in ref 1. As usual, the diagonal 
elements in A(2),, j+l are negative, and the elements in each 
column sum up to unity. It should be noted that, for PEO, 
the transition rate matrix assumes three distinct values 
depending on the pair of skeletal bonds, (OC,CC), (CC,CO) 
or (C0,OC). 

For symmetric chains with identical skeletal bonds such 
as PE, we have ril = ri2, ri3 = rT4, r*5 = r ~ 6  such that AL 
+ AR reduces to the transition rate matrix introduced in 
ref 1. If, furthermore, bonds are assumed to be inde- 
pendent, we have rfl = r*2 = r+3 = rF4 = ri5 = rr6 In this 
case the transition rate matrix for single bonds is given by5 

and AL and AR equate to 
AL = A(1) 8 I3  

AR = I3 8 A(') (30) 
in agreement with Jernigan's treatment.5 

111. Calculations 
The size of the matrix to be diagonalized and inverted 

limits the application of the present analysis to relatively 
short sequences. In the present study, the motion of the 
terminal bond-based frame'i4 in a sequence of six bonds 
in PEO is analyzed, for illustrative purposes. The absolute 
location and orientation of the sequence being immaterial, 
the first two bonds are assumed to be fixed in space, and 
a total of 34 = 81 configurations (Le., 81 eigenvalues) and 
hence 3s = 6561 transitions are considered. It is worth 
noting that the choice of four mobile bonds is sufficient 
to represent the dynamic features of the three different 
bond pairs (OC,CC), (CC,CO), and (C0,OC). The energy 
parameters for the isomeric minima and the barrier heights 
in PEO are estimated from the works of Flory and col- 
laborators18-21 and Abe et ala2* and also from conforma- 
tional energy calculations carried out in the present study 
following the usual semiempirical methods. Let E, denote 
the first neighbors interaction parameter for bond i and 
E,,i the one associated with second neighbors interactions 
for the pair of bonds i and i - 1. Assuming the second- 
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Table I 
Parameters for Energy Minima (Kilocalories/Mole) 

bond E".i E,".i 
co 0.90 0.34 
oc 0.90 8.10 
cc -0.43 0.34 

Table I1 
Heights of Saddles (Kilocalories/Mole) with Respect to tt 

Minima 
between (CC,CO) (C0,OC) (OC,CC) 

tt - tg' 2.7 2.7 3.5 

g't - g'g' 2.3 3.4 3.7 

gTg' - gTt 2.3 12 3.7 

tt - g't 3.5 2.7 2.7 

g'g' - tg' 3.7 3.4 2.3 
tg' - g*g' 3.7 12 2.3 

H Y .n Y 

Figure 1. Portion of a mobile sequence and a coordinate system 
affixed to the CC bond. 

order interactions to be operative only in the case of 
pentane effect (i.e., gigi state), the energy minima in the 
two-dimensional energy maps are 

E(tt) = 0 

E(tg*) = E,;i 

E(g*g*) = E,;$ + 
E(g*t) = E,+I 

E(g*gi) = E,$ + E+ + E,;i (31) 

The energy parameters adopted in the present study are 
listed in Table I, for the three types of skeletal bonds in 
PEO. The activation energies for various conformational 
transitions, estimated from the heights of the saddles in 
conformational maps, are listed in Table 11. The gigF 
state for the (C0,OC) pair is highly unfavorable from an 
energetic point of view and is neglected in equilibrium 
calculations. Accordingly, a high activation energy ( N 12 
kcal/mol) practically forbidding the passage to that state 
has been adopted. 

The transition rate matrices A"),., j+l defined by Charts 
I and I1 and eq 28 are inserted into eq 2 to determine the 
rate matrix A(N) governing the kinetics of the sequence of 
N = 4 bonds. A(N) is transformed following eq 4 to 
evaluate B") and L") whose elements are subsequently 
used in eq 20 and 21 to obtain the ensemble averaged time 
dependence of the property f i p  The spectral density and 
the correlation time associated with f i ,  are readily found 
from eq 22 and 25, respectively. 

Orientational Autocorrelation Functions. Figure 
1 represents a portion of a PEO chain. For illustrative 
purposes a local coordinate system is shown, with the x 
axis along the C-C bond. The y axis lies in the plane of 
the figure and is chosen so as to make an acute angle with 
the extension of the preceding bond. The z axis completing 
a right-handed coordinate system is not shown in the 
figure. 

The orientational autocorrelation function M,(t) for a 
vector along skeletal bonds, i.e., the x axis of the local 

\ 
\ 

t '  i/ '\ 

- 0.5 .I '\ 
=. ' \  ', I 

\ 
I" 1 \ '\ 

r \ '\ i 

- - - - _ _ _  
01 ' " " ' ' ' 
0 0 2  0 4  0 6  0 8  1 0  

t (ns) 
Figure 2. Decay with time of the second OACF for the Nth bond 
vector from a fixed end in PEO (solid curve) and PE (dashed 
curve) chains, with N = 6, T = 300 K, and A. = 2.77 X 10" s-'. 
Data from Table I and I1 have been used for PEO. 

l ' O 4  n n 
- I I \ \  

1 
i 

O I i I I I I l I I  
0 0 2  0 4  0 6  0.8  1.0 

t (ns) 
Figure 3. Decay of the first OACFs M,,(t) with time for m = 
x, y, and z in the local frame in motion. The curves are calculated 
for PEO, with the same data as in Figure 1. 

frame in motion, in PEO at  300 K is shown in Figure 2. 
Equations 21 and 24 with f i j  = [3(mi.mj)2 - 1]/2 have been 
used in calculations. 

For comparison, the equivalent curve obtained for PE 
with the same front factor, A. = 2.77 X 10"/s as the one 
adopted in previous studies,14 is given by the dashed curve. 
It is clearly seen that PEO relaxes much faster than PE, 
as expected from their conformational characteristics. In 
fact, the energy barriers in PEO are in general lower than 
those in PE. 

Figure 3 displays the decay of the first OACF Ml,(t) 
with time, for PEO. The curves are drawn for the three 
axial vectors m = x, y, and z spanning the local frame in 
motion. Calculations are performed with the same data 
as those for Figure 2. It is interesting to note that vectors 
along skeletal bonds are those which relax the fastest. This 
behavior is in contrast to the one ~ a l c u l a t e d ~ ~ ~  for PE, 
where the OACF of bond vectors decays slower compared 
to those for vectors along y and z. This feature is a direct 
consequence of the drastic differences between the con- 
formational characteristics of PE and PEO chains. In 
PEO, gauche states are more favorable from an energy 
point of view, leading to a loss of orientation for vectors 
along the backbone, while in PE, the most probable state 
being the trans state, there is higher persistence along the 
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3 o t  \ 1 

- 
r 2 A0 

0 1---1-_ _. --I._ L. _-_I 
0 5 1 0  1 5  2 0  

u x 10-8 s-,  

Figure 6. Frequency dependence of spectral density function 
for the sixth bond from a fiied origin in PEO, at 35 O C .  The curves 
represent J ( w )  for various solvent viscosities which are assumed 
to be inversely proportional to the front factors (Ao, 2Ao, etc.) in 
the rate expressions. The intercept represents the corresponding 
correlation times. A. = 2.77 X 10" 8. 

0 0 2  0 4  0.6 1.0 

t (ns) 
Figure 4. Decay of the second OACF M2,,(t). See legend for 
Figure 3. 

t o r - -  7 - I/-' 1 -  -1 

- - I - _ . 1 _ - 1  _ _  -2 
L 0 4  0 8  1 2  

t i n s 1  
Figure 5. Effect of solvent viscosity on OACFs for PEO. The 
lower curve is identical with the one in Figure 2. The two upper 
curves are obtained using the front factors Ao/2 and Ao/4 to  
account for the effect of doubling the viscosity, all of the other 
parameters being unchanged. The relaxation times are found to 
be linearly proportional to  solvent viscosity. 

3c direction. Calculations performed for the second OACFs 
indicate that similar behavior is valid for the second 
OACFs, as shown in Figure 4. 

It should be noted that the OACFs in Figures 2-5 do not 
decay to zero. In fact, in the limit as t - m,  all the ex- 
ponentials contributing to Mi(t) = Ckj exp(Ait) vanish, 
except for the one corresponding to the zero eigenvalue 
X1, i.e., Mi(m) = k , ,  a value which is determined by the 
specific characteristics of the chain. For the curves in 
Figure 3, k ,  (or Ml,(m)) equals 8.8 X 0.13, and 3.2 
X for m = x, y, and z. Similarly the respective as- 
ymptotic values in Figure 4 are 5.9 X and 
7.4 X Full relaxation takes place only if an overall 
rotation is superimposed, i.e., the first bond of the sequence 
is allowed to undergo orientational motion. However, the 
contribution of the relatively slow overall motion to the 
predicted OACFs is expected to be negligibly small in the 
range t < 1 ns. 

To show the influence of the effective viscosity, q, on the 
relaxation behavior, a series of M k ( t )  curves obtained by 
modifying the front factor, A,, are drawn in Figure 5. From 
the analysis of the k ,  and A j  values corresponding to dif- 
ferent viscosities, it is observed that the doubling of the 
front factor, A, (or halving of q ) ,  is directly reflected upon 
the eigenvalues which are equally doubled while k j  values 
remain unchanged. This is in conformity with the defi- 

6.4 X 

nition of k,'s above, where it is asserted that they are 
determined by the equilibrium statistics of the investigated 
property and only the eigenvalues account for any time 
dependence. 

Spectral Density Functions. Figure 6 displays the 
spectral density functions J(w) associated with Mb(t),  Le., 
calculated from eq 22 with the k, values corresponding to 
the second OACF of the Nth bond vector in PEO, with N 
= 6, T = 35 "C. As the shape of J ( w )  depends on the value 
of the front factor, A,, as an illustration, the spectral 
density functions are drawn for four different front factors, 
Ao/4, Ao/2, A,, and 2Ao, choosing A, = 2.77 X 10l1/s as 
above and keeping all of the other parameters constant. 
Clearly, the change in the front factor from Ao/4 to 2Ao 
is equivalent to a decrease in viscosity by a factor of 8, 
following the approximation of the inverse proportionality 
between A, and q,  as mentioned above. The highest fre- 
quency dependence, in the range 0 < w < 2 x 10s/s, is 
exhibited by the chain with the lowest front factor, i.e., 
in a solvent with relatively high viscosity. The frequency 
dependence is weaker in media allowing for fast motions, 
as the extreme narrowing limit is approached. At the 
intercept, J(0) becomes identically equal to the correlation 
time, 7, as apparent from eq 22 and 25. 

Frequency Distribution of Relaxational Modes. 
From eq 24, it clearly appears that A, represents the fre- 
quency of the nth mode of relaxation and k ,  is the cor- 
responding a priori probability of relaxation through mode 
n. In fact, for the case when ( f i j ( t ) )  represents the OACFs 
associated with unit vectors m, we have Ck, = 1. Thus, 
k, values characterize the distribution of relaxational 
modes. Inasmuch as k, depends on the property inves- 
tigated, different frequency distribution curves are ob- 
tained for different directions. For illustrative purposes, 
the frequency distribution of the relaxational modes as- 
sociated with the second OACF for a vector along the C-H 
bonds in PEO, at  300 K, is shown in Figure 7. Data from 
Tables I and I1 have been used in the calculations. The 
abscissa in the figure (log (-A,), A, in s-l) has been divided 
into intervals of 0.5, in the range 8.5 < log (-A,) < 11. The 
ordinate represents the sum of the a priori probabilities 
in each interval. The number of relaxational modes and 
the corresponding probabilities, Ck,, in each interval are 
listed in Table 111. I t  is interesting to note that the fre- 
quency distribution is rather large (it covers 2 decades) and 
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Figure 7. Distribution of frequencies of various relaxational 
modes for 13C NMR at 27 "C. A. = 2.77 X 10" 5-l. The vertical 
dashed line indicates the lower cutoff for frequencies used in the 
calculations. 

Table I11 
Data for Figure 7 

~~ 

no. of 
eigenvalues in 

interval of log (-A) the interval Yk. in each interval" 
8.75-9.00 
9.00-9.25 
9.25-9.50 
9.50-9.75 
9.75-10.00 

10.00-10.25 
10.25-10.50 
10.50-10.75 
10.75-1 1.00 

2 
1 
2 
2 
1 
8 

28 
18 
18 

0.1258 
0.0063 
0.0459 
0.0229 
0.0156 
0.0774 
0.5807 
0.0811 
0.0172 

a k, = 0.0271 for the zero eigenvalue. 

two peaks centered at  about log (-An) = 8.9 and 10.4 are 
obtained. Calculations show that same qualitative features 
are preserved for different temperatures and directions of 
m. 

IV. Comparison with Experiments 
In the following, the predictions of the theory are com- 

pared with the correlation times and spin-lattice relaxation 
times measured in the 13C NMR and 'H NMR experi- 
ments. 

With the assumption of a purely 13C-'H dipolar relax- 
ation mechanism, the spin-lattice relaxation time, TIC, in 
the 13C NMR experiments is given by23 

1/TlC = [nOh2yC2yH2/10rCH61 
[J(WH - Wc) + 3J(wc) + ~ J ( W H  i- Wc)] (32) 

where h = h/27r, h is the Planck's constant, YH and yc are 
the gyromagnetic ratios, and WH and wc are the resonance 
frequencies of the hydrogen and carbon nuclei, respec- 
tively. rCH is the internuclear distance, which is taken to 
be equal to 1.1 A in the calculations. no denotes the 
number of protons (here 2) contributing to the dipolar 
interaction with the 13C nucleus. 

As to the spin-lattice relaxation time, TlH, measured in 
'H NMR, it  is given24 by 

1/T1H = [3h2yH4/lorHHsl[J(oH) + 4J(2wH)I (33) 

assuming a purely 'H-'H dipolar relaxation mechanism 
between proton pairs. Here r" is the distance between 
the interacting protons. For PEO, the internuclear sepa- 
ration, r", is taken as 1.8 A. 

It should be noted that the spectral density functions, 
J ( w ) ,  which are used in eq 32 and 33 differ from each other 

L o4 / 

O 0 1 1 
1.0 2.0 

1 /'I (CP-1)  

Figure 8. Isotropic correlation times TC from NMR as a 
function of solvent viscosity for dilute PEO solutions in the various 
solvents listed in Table 111. Empty circles result from the ex- 
periments of Lang et a1.12 at 30 O C .  The solid line is calculated 
by the dynamic R I S  model with the data in Tables I and 11, using 
eq 21 and 25 where (fd) = M2,(t);  m is the C-H bond vector. 
A, = 2.77 X 101'/s where A, is in s-l and 7 is in cP. The same 
conformational data and front factor are used in Figures 9-11. 

inasmuch as they are calculated for specific internuclear 
vectors with different orientations with respect to the 
backbone. In fact, the unit vector m involved in 'H NMR 
is along the z axis of the local frame (Figure l ) ,  while m 
in 13C NMR, which is identical with the C-H bond vector, 
is a combination of the three axial directions and is cal- 
culated using the geometrical parameters of PEO. The 
resulting kj values and consequently the spectral densities 
will be different for the two types of experiments. Simi- 
larly, distinct correlation times TC and TH are associated 
with 13C and 'H NMR, respectively. The frequency de- 
pendence of J(o) is expected to vanish in media, allowing 
for relatively fast motions, such that A j  >> (wH + oc), for 
all j .  Measurements carried out under such extreme 
narrowing limit conditions may be used to calculate the 
prevailing correlation times, referred to as the isotropic 
correlation times, according to 

1/Tic = noh2yc2yH2Tc/rcH6 (34) 

1 / T 1 H  = 3yH4h2?H/rHH6 (35) 
Equations 34 and 35 directly follow from eq 32 and 33, 

respectively, in which the spectral densit functions reduce 
regardless 

of the frequency argument. Subscripts and H appended 
to 7 refer to 13C and 'H NMR, respectively. 

The results from the 13C NMR experiments by Lang et 
a1.12 on dilute PEO solutions are shown in Figure 8. Ex- 
periments are performed at 30 "C and 25.2 MHz in various 
solvents. Only those solvents not leading to hydrogen 
bonding with PEO are included in the figure. The ex- 
perimental correlation times are presented as a function 
of solvent viscosity. Similarly, Figures 9 and 10 display 
the results from 'H NMR at  35 "C and 50 MHz. Exper- 
imental points from the work of Liu and Anderson'O are 
shown by the empty circles. Diamonds represent the 
measurements by Hermann and Weill" for PEO in p -  
chlorophenol at  various temperatures. 

The small numbers next to the experimental points in 
Figures 8-10 refer to the solvents listed in Table IV. The 
experimental data are reported in both cases to be obtained 
under extreme narrowing limit conditions; i.e., the de- 
pendence on the operating frequency is negligibly small. 
This indicates that only those eigenvalues A, >> (wH + w,) 
are operative. We consider accordingly a range of relax- 
ational frequencies corresponding to relatively fast mot- 

and 

to the isotropic correlation times, 7 = x6=2ki/Aj, z 



2402 Bahar et al. Macromolecules, Vol. 22, No. 5, 1989 

4i- I O - 1  

9 ( C P  1 
Figure 9. Spin-lattice relaxation times TIH for PEO from 'H 
NMR.as a function of solvent viscosity at 35 "C. Circles and 
diamonds represent the experimental results from ref 10 and 11, 
respectively. The solid curve is calculated by the dynamic RIS 
model for 50.0 MHz, m = z, using eq 21, 22, and 33. 
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Figure 10. Isotropic correlation times TH from 'H NMR, as a 
function of solvent viscosity, at 35 "C for dilute PEO solutions 
with the solvents listed in Table 111. Empty circles are cal~ulated'~ 
from the spin-lattice relaxation times measured by Liu and 
Anderson'O at 50 MHz, assuming extreme narrowing limit con- 
ditions. The solid line is calculated by the dynamic RIS model. 

Table IV 
Solvents in NMR Experiments" 

4, C C 4  13, chlorobenzene 
7, CHzBrCHzBr 15, a-chloronaphthalene 
8, CHClZCC1, 16, a-bromonaphthalene 

3, CH2ClCHzCl 10, CHJ2 

aSame indexes as those in ref 12 are assigned to the solvents. 

ions. This is established through introduction of a suitable 
cutoff in the frequency distribution function in Figure 7. 
The vertical dashed line in the figure indicates the cutoff 
introduced in the present calculations. Relaxation modes 
lying in the left-hand side of the cutoff are omitted in the 
calculations. This region corresponds to modes with re- 
laxation times which are a t  least 1 order of magnitude 
larger than the observed correlation times (see sequel) such 
that their superposition on the observed faster modes is 
inconsequential. 

As mentioned above, the kj values in the dynamic RIS 
model are inherently determined by the chemical structure 
and equilibrium statistics of the chain and are calculated 
for the specific property fnk investigated according to eq 
21. Here fnk = [3(m,.mk)z - 1]/2, where m is replaced by 
suitable internuclear vectors. In the local bond-based 
coordinate system,'J' m equates to the column vectors (0 
0 l)T for 'H NMR and (-0.323 0.479 0.817)T for 13C 
NMR, as follows from the molecular geometry of PEO. 
The dynamic behavior of the chain is dictated by the ei- 
genvalues, Aj. The calculations in section I11 demonstrated 

I ,  I 
3.0 3.5 4 0  

1 0 ~ 1 ~  [ K-' I 
Figure 11. Temperature dependence of correlation times. Points 
represent experimental data from ref 12. The solid line is obtained 
by the present theory, leading to an activation energy of 1.8 
kcal/mol. 

that Xj's are linearly proportional to the front factor, A. 
in the rates ri (or rJ between conformers; Le., 

!A,[ - A. j = 1, 3N (36) 

But from eq 27, A. - r', or using Stoke's law we have 

A0 - q-' (37) 

Combining the proportionalities given by eq 36 and 37, 

IA,l - 7-l j = 1, 3N (38) 

we end up with 

or from eq 27, 
I/. - 1 / 7  (39) 

The results from calculations are shown by the curves 
in Figures 8-10. Calculations are performed with the data 
in Tables I and 11, and the front factor & = [2.77 X 101'/77] 
s-', where 7 is in centipoises. The latter is found to yield 
the best agreement with 13C NMR and 'H NMR and 
electron spin resonance (ESR) (Figure 11) experiments, 
simultaneously. It is interesting to note that, from the ESR 
study of dilute PEO solutions a t  different temperatures, 
Friedrich et al.25 estimate a relationship between A. and 
7-l of the form A. = [3.03 X 10"/7] s-l, which is in close 
agreement with the normalization of A, adopted in the 
present study. 

The dependence of correlation times on temperature is 
displayed by the Arrhenius plot in Figure 11. Points 
represent experimental data from the work of Friedrich 
et al.% The solid line is theoretically obtained by repeating 
the above calculations for various temperatures. The lines 
obtained for TC and TH are indistinguishable on a loga- 
rithmic scale. The same activation energy, equal to 1.8 
kcal/mol, is theoretically obtained both for 'H NMR and 
13C NMR, confirming that energies of about one barrier 
height between isomeric states activate local conforma- 
tional transitions in polymeric chains in dilute solution. 
The relatively low apparent activation energy (compared 
to those listed in Table 11) mainly originates from the 
frequency cutoff adopted in the theoretical spectrum of 
relaxational modes. 

V. Conclusions 
The present analysis leads to the following concluding 

remarks: 
(1) The stochastics of conformational transitions in a 

given polymer in dilute solution are governed by a set of 
eigenvalues A, that are found from the solution of the 
master equation describing the motion of a short sequence. 
Their absolute values may be identified as the frequencies 
of individual modes contributing to relaxation on a local 
scale. They are characteristic of a given chain at  a given 
temperature and are linearly proportional to l / q .  
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(2) Properties such as OACFs, correlation times, and 
spectral densities are easily calculated using A i s  together 
with the weighting factor kis, which equally follow from 
the master equation but assume different values depending 
on the property investigated and the equilibrium statistics 
of the chain. 

(3) Local chain dynamics is found to be significantly 
dependent upon the molecular structure, as the compar- 
ison of OACFs for PE and PEO in Figure 1 indicates. 

(4) The present form of the dynamic RIS model which 
is developed for relatively short sequences in motion seems 
suitable for the interpretation of high-frequency motions 
of the order 101o-lO1l/s and, in particular, the spin-lattice 
relaxation and correlation times measured in NMR ex- 
periments with dilute polymeric solutions. The theory 
satisfactorily reproduces the experimentally measured 
spin-lattice relaxation and correlation times in ‘H and 13C 
NMR, as well as the observed activation energies and the 
front factor, A@ The agreement of the latter lends support 
to the postulated inverse linear dependence of A,  on vis- 
cosity. 
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Polymeric Micelles: Their Relaxation Kinetics 
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ABSTRACT: Relaxation experiments-such as T jump-in solutions of polymeric micelles are theoretically 
analyzed. Only micelles formed by neutral A-B diblock copolymers in a selective solvent of low molecular 
weight are considered. The Aniansson-Wall mechanism, which allows the micellar size distribution to adjust 
in steps consisting of single-chain insertion/expulsion, is found to have the lowest activation free energy. The 
relaxation behavior is expected, as usual for micellar solutions, to be characterized by two relaxation times. 
The scaling form of the fast relaxation time, T ~ ,  is obtained by use of the properly adapted Kramers rate theory. 
T~ is found to have different forms for starlike micelles and for micelles with thin coronas. In both cases, 
T~ - e x p ( N ~ ~ / ~ y a ~ / k T )  where NB is the core block’s degree of polymerization (DP) and y the surface tension 
of the core-corona interface. The preexponential factor is, however, different in the two systems. In solutions 
well past the critical micelle concentration (cmc), the preexponential factor scales as NB’/~ for micelles with 
thin coronas (NB >> NA) and as N A ~ ’ ~ N B ~ ~ / ~  for starlike micelles (NB << NA) where NA is the coronal block’s 
DP. The different scaling laws are obtained because the passage through the corona is the rate-determining 
step only in starlike micelles. 

*Presently at  The Hebrew University. 
equilibrium properties. Yet, the kinetics of polymeric 
micelles should prove of interest both from polymer and 
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