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Abstract

A systematic method of representing and analyzing the intramolecular strains in proteins is proposed. For illustrative purposes,
the method is applied to the N-terminal fragment of the human T-cell glycoprotein CD4. The method is based on the singular value
decomposition (SVD) of molecular dynamics (MD) trajectories. The slowest three modes of motion that carry information along the
protein molecule over large length scales are analyzed, so as to characterize the collective motions and the resulting strains along
the three principal axes of the protein. Strong cooperative motions of different types, mainly wave-like, wagging, wiggling,
breathing, bending and shearing motions, and rigid body rotations are distinguished. The mean-square fluctuations of C“-atoms
induced by the three dominant modes are found to exhibit a closer correlation with the experimental temperature factors in the
presence of solvent. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A systematic analysis of the type and strength of
cooperative motions in proteins is of fundamental impor-
tance for clarifying the structure—function relationships
underlying most biomolecular processes. Recent studies
demonstrate that it is possible to gain insights into the
mechanism of cooperative motions by decomposing the
molecular dynamics (MD) trajectories into collective
anharmonic modes of motion and focusing on the effect of
a few dominant modes [1-6]. In the present study, a
systematic method of representing and analyzing the coop-
erative dynamics of proteins is developed. The method is
based on the singular value decomposition (SVD) of MD
trajectories of atomic fluctuations. SVD has in fact proven
useful in various disciplines [3,5], and its recent application
to protein dynamics [3,4,6] revealed its potential utility for
elucidating the collective motions which are not readily
accessible by conventional MD simulations.
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In search of cooperative dynamics, the slowest modes of
motion that carry information along the protein molecule
over large length scales are considered. A large length
scale is commensurate with the overall dimensions of
the protein. A small length scale, on the other hand, is
defined at the residue or sub-residue level. Events taking
place at the small length scale may be classified as local
dynamics.

The specific protein investigated in the present study is
the N-terminal fragment of the human T-cell glycoprotein
CD4. [7,8] Human CD#4 is the receptor for HIV, with the
first domain carrying the critical sites for the HIV binding
[7,8]. The X-ray elucidated structure of the investigated
fragment is shown in Fig. 1. This consists of 177 residues
arranged in two domains, both of which fold into Greek
key B barrels. The tertiary fold of domain I (residues 1—
98), which comprises nine antiparallel strands, is similar
to the variable domain of immunoglobulin light chains.
Domain II (residues 99—-176) is composed of seven anti-
parallel strands, and resembles immunoglobulin constant
domains. Overall, the structure is rod-shaped, as seen
from Fig. 1. There is a large hydrophobic interface
between the two closely associated domains. In fact,
MD simulations of the same structure showed the high
mobility of the residues in the binding region of the mole-
cule [9]. Our analysis departs from that of Ptaszek et al.
[9] in that significantly longer trajectories are generated

0032-3861/02/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0032-3861(01)00424-4



432 P. Doruker et al. / Polymer 43 (2002) 431-439

(a) xy-plane (c) yz-plane
—
1nm
(b) xz-plane

Fig. 1. Projection of X-ray structure (trace of C*-atoms) of CD4 on the three
principal planes: (a) front view, (b) top view, and (c) end view. Domain I
and II are located on the left and right halves of the front view.

here, and the results are analyzed by SVD technique with
the aim of exploring the collective motions of the mole-
cule. Thus, we concentrate here on the contribution of
different nonlinear modes to the cooperative motions of
the overall molecule.

2. Theory

2.1. The fluctuation trajectory matrix and its modal
decomposition

The dynamics of the protein will be expressed in
terms of the time-evolved coordinates of backbone
carbon atoms C% In the coarse-grained scale as in the
present one, each C®-atom represents a repeat unit (or
residue) of the protein. The repeat unit is thus inter-
changeably used with the corresponding C® atom,
which also carries an amino acid side group. The coor-
dinates of the C®-atoms are expressed in the principal
coordinate system xyz, as outlined in the Appendix A.
The position vectors R; of C* atoms in the frame xyz
will be referred to as the principal coordinates of the
molecule. The x and z-axes define the major and minor
principal directions, respectively. The x, y and z direc-
tions are alternatively named as the longitudinal, lateral,
and transverse directions, respectively. The structure of
CD4 backbone projected along the three principal
planes is presented in Fig. 1. The view in part (a),
projected on the xy-plane will be referred to as the
front view. The view projected on the yz-plane in part
(b) will be referred to as the top view, and the view
projected on the yz-plane in part (c) is the end view, or
equivalently, the cross-section of the protein.

The thermal fluctuations of the position vectors R; with
respect to their native states, undergone in MD simulations
of equilibrated CD4 structure, will be analyzed. The fluctua-

tions are organized in a matrix AR called the fluctuation
trajectory matrix

[ AR (t;) AR,(tp) AR (1,) T
ARy(t;)  ARx(tp) AR, (t,)
AR = | ARs(t)) AR;s(ty) AR;(1,) (1
_ARm(tl) ARm(tZ) ARm(tn) -

for a protein of m residues. Here, AR(#) represents, for
example, the change in the position vector of the ith a
carbon in the jth time step with respect to its position in
the equilibrated molecule. The organization of the time-
evolved coordinates in the matrix form of Eq. (1) permits
the formal separation of space and time-dependent
components as

time —
AR = | space )
|

The fluctuation trajectory matrix may be readily decom-
posed into the product of three matrices using the SVD
technique [10] as:

T
AR[3an]:U[3m>(3m]A[3m><3m]V[3an] (3)

Here, U is the matrix of left singular vectors (LSV) of
AR, which reflects the time-averaged space-dependent
features. V is the matrix of right singular vectors (RSV).
The ith row of V represents the time evolution of AR; in the
space spanned by the LSVs, shortly referred to as the singu-
lar space. A is the diagonal matrix of the singular values A;
of AR. These are organized in descending order A} = A, =
= Ay

Let us consider the contribution of the kth mode to the
observed dynamics. The trajectory corresponding to the kth
mode may be obtained from AR(k) = UA'V’, where A’
contains all zeros except the kth singular value A,. For a
given (fixed) time #, the fluctuation of the position vector of
the ith C* atom may be written as:

AR;(1;, k) = Q(1;, kyu,(k) “

where Q(#,k) is a coefficient of proportionality, equating to
the ijth element of )\kVT. Thus, O(t;,k) modulates the instan-
taneous fluctuations of all residues induced by the kth mode,
by a constant factor. The vector ui(k), on the other hand, is
independent of time, and represents the direction of fluctua-
tions of the ith C* atom, specifically, for the kth mode. The
three components of u,(k) are proportional to the principal
components of the displacement vector or the displacement
field vector [11] for the ith a-carbon. In the exploratory
calculations below, Q(#;,k) will be chosen as unity and the
three components u;,(k), u;(k), and u;,(k) of u,(k), referred to
simply as the components of the displacement field vector,
will be investigated.
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Several important corollaries follow from Eq. (4), for a
pure mode, say the kth: (i) Plotting the components of the
displacement field vector as a function of the residue index i
gives the fluctuation profile of the protein along the back-
bone. Alternatively, plotting them as a function of position
R, irrespective of the residue index, gives the fluctuation
profile in space. For a pure mode, the ratio of the fluctuation
amplitudes of any two residues is independent of time. Only
the amplitude of fluctuation of each residue changes by a
constant factor Q(#;,k) corresponding to the jth time step. (ii)
Zero’s of the fluctuation profile correspond to stationary
residues (or regions) of the protein. Minima indicate
constrained regions. (iii) The time decay of the normalized
auto and cross-correlation functions for the fluctuations of
residues are all identical, exhibiting the same correlation
time 7, characteristic of the kth mode. 7, is therefore a
collective property of the overall protein.

2.2. The principal components of the displacement field in a
protein

In order to explore the displacements of the protein in the
coarse-grained sense, one may define average displace-
ments by performing a summation over residues in a
given volume element. For the interest of simplicity, we
consider three infinitesimal volume elements, each in the
form of a slab, normal to the x, y, and z-axes as shown in
Fig. 2. The displacement, {u;(k, x)), induced by the kth mode
along the ith principal direction, undergone by a slab which
is normal to the x-axis of the principal frame is found from

f%wm—m
(uitk, )y = = )
Z o(x — x,)
p=1

where the summations are performed over all m residues,
and O(x — x,) is the dirac delta function which selects all
residues located within a slab at x = dx. Proceeding in this
manner, one may obtain nine average displacements which
may be arranged in a 3 X 3 matrix D(k) of displacements, as:

(uy(k,x)) (un(k,y)) - Cuy(k, 2))
(uy(k, ) Cuy(k, ) Cuy(k, 2)) (6)
(u(k,x)) gk, ) Cug(k,2))

y sy y
(a) () (c)

Fig. 2. Schematic representation of three slabs through the molecule, the
motions of which will be analyzed: (a) a cross-section normal to the x-axis,
the molecule being observed from the front view, (b) a horizontal plane as
seen from the end view, (c) a vertical plane as seen from the end view.

D(k) =

The argument k indicates that the kth mode is retained.
The elements of the first column of D(k) denote the average
or collective displacements of a cross-section at a position x
along the respective principal directions. The elements of
the second column represent the displacements of a slab
normal to the y-axis through the molecule. The position of
the slab is defined relative to the origin by the value of the
argument y. Finally, the elements of the third column repre-
sent the three components of the displacement vector of a
vertical slab whose position relative to the origin is given by
the argument z. The three planes whose fluctuations are
represented by the three columns of the tensor of Eq. (6)
are shown in the respective parts (a)—(c) of Fig. 2.

2.3. Deformation gradients and strains in the protein

The deformation gradient tensor u; ; for the protein may
be obtained from Eq. (6) as:

M ek, x) ek, y)  Hunk,2) ]
ox ay 0z
Y ox dy 9z
Nu(k, ) Huk,y)  Hu(k,2)
u ox ay 0z -

where u; ; represents differentiation of the ith component of
u with respect to the jth coordinate. The strain tensor € may
be obtained from the deformation gradient tensor according
to the relation € = (u;; + w;;)/2.

3. Calculations

Three MD trajectories have been generated. Two of the
trajectories are obtained in vacuo by using the parameter set
37D4 of the GROMOSS7 force field [12]. The third MD
simulation has been carried out in water using the consistent
valance force field (CVFF) implemented within the Mole-
cular Simulations Inc. InsightIl package [13]. The indepen-
dent runs were carried out in order to verify the
reproducibility of the results, as well as to assess the effect
of solvent. The starting configuration of the protein is taken
from the X-ray structure entry 2CD4 [7] available in the
Brookhaven Protein Databank [14,15].

In all the simulations, the initial structure is relaxed by
conjugate gradients energy minimization. Simulations are
carried out at 300 K by coupling to an external heat bath
[16] with a relaxation time constant of 0.01 ps. Bond lengths
are constrained to their equilibrium values by the SHAKE
procedure [17]. In the vacuum simulations 800 ps long
trajectories, each following a 200 ps equilibration period,
are generated with a time steps of 2 fs. Non-bonded inter-
actions are calculated using the twin range method [16] with
short- and long-range cutoff radii of 8 and 12 A, respec-
tively. The neighbor list is updated every 20 fs using the
concept of charge groups. With the simulation of 2CD4 in
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water, a cage of water molecules of 6 A thickness is formed
around the protein molecule. This procedure leads to the
generation of 2001 water molecules. A 100 ps equilibriation
period is followed by a 300 ps trajectory, whereby 2.5 fs
time steps are used. Group-based cutoffs are used with a
9.5 A cutoff distance. A switching function is used with
spline and buffer widths set to 1.0 and 0.5 A, respectively.
The neighbor list is updated whenever any atom moves
more than one-half the buffer width.

Note that, in previous work MD simulations of 135
and 100 ps duration have been carried out in solution
and in vacuo, respectively, starting from the same struc-
ture [9]. Simulations in vacuo exhibited stronger fluc-
tuations near the native structure (rms deviation of
backbone atoms of about 3.0 A) compared to those in
solution (rms deviation of about 1.5 /&). Yet, the data
from both of the simulations were reported to agree
moderately well with each other and with the crystal
structure [9]. Similarly, the average rms fluctuations in
C“*-positions is 3.02 and 1.44 A, in the vacuum and explicit
solvent simulations, respectively, indicating that substates
around the native state, only, are visited throughout the
simulations.

The mean position vectors R; of the C® coordinates
throughout simulations are evaluated from the average over-
all configurations recorded at 0.25 ps intervals. The results
are rearranged in the form of the matrix R given by Eq. (A2)
to obtain the principal axes x, y and z of the protein as
defined in the Appendix A. The time-evolved coordinates
are transformed into the frame xyz, and the corresponding
atomic fluctuations are organized in the trajectory matrix
AR (Eq. (1)). SVD of AR yields the singular modes and
directions. The first three dominant modes will be analyzed
inasmuch as the slowest modes operating over large length
scales are presently explored. The contribution of the first
three modes to the overall motion is found from the relation
S A/ S A to be 70% in vacuum and 40% in explicit
solvent simulations.

4. Results and discussion

(i) Effect of the first mode. In Fig. 3(a)—(c), the displace-
ments {u,(1,x)), (u,(1,x)) and (u.(1, x)) imposed by the first
mode on residues located at the position x of the longi-
tudinal axis are presented as a function of x. The horizontal
straight lines in the figures serve as references. The broken,
thin lines go through the positions of all the C* atoms along
the x-direction. The solid curves, on the other hand, are
obtained by fitting the thin lines with polynomials of order
seven. One may make the plausible assumption that these
curves are representative of the mean displacements defined
by Eq. (5). The term {u,(1,x)), for example, describes the
motion of the slab illustrated in part (a) of Fig. 2 along the
longitudinal axis x; whereas (u,(1,x)) and (u,(1, x)) refer to
the motion of the same cross-sectional volume element in

the directions of the y- and z-axes, respectively. These
motions are extracted from one of the vacuum trajectories
generated.

According to the solid curve in Fig. 3(a), the left half of
the molecule along the longitudinal axis, or domain I, is
almost stationary along the x-direction. The right half
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Fig. 3. Collective motions induced by the first (k = 1) dominant mode of
motion identified by the SVD of a vacuum trajectory of 800 ps. Displace-
ments of the slab shown in part (a) of Fig. 2 are shown as a function of the
position of the slab along the x-axis. Parts (a), (b) and (c) display the x-, y-
and z-components, respectively, of the mean displacements for the slab.
The thin lines connect the results u;(k), u;(k), and u; (k) obtained for
individual residues i, as a function of their position along the x-axis. The
solid curves represent the best fitting seventh order polynomials. They
describe the collective motions along the longitudinal axis of the molecule
(see Eq. (5)). The inset in part (a) displays the normal strain €,, along the
x-axis. The collective motions observed in parts (a)—(c) may be charac-
terized as earthworming, wave-like and wiggling types of motions,
respectively.
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(domain II), on the other hand, is rather mobile, part of it
exhibiting a contractile motion while the remaining part
undergoes an elongational motion along the longitudinal
direction. This mode of motion resembles the locomotion
of an earthworm, and may be referred to as ‘earthworming’.
The characteristic time of this mode is obtained from the
correlation analysis (see below) of the RSVs as 58.6 ps. The
inset displays the corresponding component €,, of the strain
tensor €, obtained by differentiating the solid curve repre-
sentative of {u,(1,x)). Domain I is verified to undergo rela-
tively small normal strains along the longitudinal direction,
except for the N-terminus which is highly stretched. In
Domain II, strong variations from tension to compression
are observed. The average magnitude of the strain is about
5% which is relatively large and may necessitate the consid-
eration of the non-linear components of the displacement
gradient in the finite strain tensor.

In Fig. 3, part (b), the shearing motions of the same slab
are displayed as a function of x. The solid curve indicates
‘wave-like’ motions. In part (c), the transverse motions,
(u.(1,x)), are presented as a function of x. These motions
are observed from the top view of the molecule, which is
illustrated in part (b) of Fig. 1. A ‘wiggling’ motion is indi-
cated by the solid curve.
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Fig. 4. Same deformations as in Fig. 3, replotted in the presence of solvent.

The effect of solvent on the first mode may be seen by
comparing Fig. 3 with Fig. 4. The latter is obtained in the
presence of solvent. The contractile and elongational
motions along the major axis of the molecule are seen to
be distributed over the whole molecule in the presence of
solvent, as seen from Fig. 4a. About half of the chain exhi-
bits contractile and the other half exhibits an elongational
motion. In Fig. 4b and c, on the other hand, we observe
lateral shrinkage accompanying the longitudinal tension in
the first domain, while the second domain expands radially,
consistent with its longitudinal contraction. It should be
stressed that although the results for (u,(1,x)), (u,(1,x)),
and (u,(1,x)) differ for the vacuum and solvated molecule,
calculations show that the other components of deformation
in the first three modes are similar in the absence and
presence of solvent. For this reason, only the results in
vacuum will be presented in the remaining parts of the
manuscript.

We now consider the collective motions as observed from
the end-view of the molecule. Results are displayed in
Fig. 5(a) and (b). In parallel with Fig. 3, the thin line in
each figure reflects the behavior of the individual residues
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Fig. 5. Shear displacements of slabs observed from the end-view of the
molecule from a vacuum trajectory. (a) The transverse component (1, y))
of the displacement tensor D(1) as a function of the lateral position y of the
examined slab. (b) The component {u,(1,z)) as a function of the position
along the z-axis. The jagged lines refer to the displacements of individual
residues, and the solid curves reflect the collective motions as observed
from the end-view, mainly a right-handed rigid body rotation along the
longitudinal (x) axis.
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as a function of their position along the molecule. The best
fitting lines through the data, on the other hand, reflect the
shear components u.(1,y)) and (u,(1,z)) of the collective
displacement tensor D(1). In part (a), the transverse
displacements (u,(1,y)) of the slab are shown as a function
of the lateral position y. The curve thus reflects the behavior
of the successive slabs obtained by sliding along the y-axis.
The fact that this is a smoothly increasing curve with
increasing y, crossing the value (u.(1,0)) = 0, reveals the
overall counterclockwise rotation of the molecule as viewed
in part (b) of Fig. 2. Thus, the molecule undergoes a right-
handed rotation about the longitudinal axis, by the effect
of the first mode of motion. The lateral displacements
(uy(1,2)), displayed in part (b) of Fig. 5, confirm this rota-
tory behavior. Here the slabs illustrated in part (c) of Fig. 2
are considered, as a function of their position along the z-
axis and their motion in the y-direction are analyzed. The
occurrence of a rigid body rotation is also confirmed by
substituting the slopes of the straight lines in Fig. 5(a) and
(b) into the shear strain €,, = (u,, + u,,)/2 which equates
approximately to zero.

(ii) Effect of the second mode. In Fig. 6(a), the longi-
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Fig. 6. Motions driven by the second slowest mode of motion from a
vacuum trajectory. Part (a) displays the normal displacements (u,(2,x))
of the slabs along the x-axis, in the same format as in Fig. 3. A breathing
type of motion is revealed. Part (b) shows the shear displacements (u,(2, x))
of the same cross-sections, i.e. slabs normal to the x-axis, as a function of
their position along the x-axis. A sharp bending motion of the molecular
principal axis is indicated.

tudinal motions {u,(2,x)) of the molecule along the x-axis
induced by the second mode are presented for the vacuum
simulation. The points of domain I move along the positive
x-direction while those of domain II move in the opposite
direction. This reveals a uniform contraction of the mole-
cule along the x-direction. However, since the molecule
executes a cyclic motion, it will be expanding at the next
instant. This results in a ‘breathing’ type of motion, the
characteristic time of which is found to be 38.0 ps (see
below).

Fig. 6(b) shows the shearing motions of the same cross-
sections (shown in part (a) of Fig. 2) as a function of their
position along the x-axis. The solid curve for (u,(2,x))
through the data indicates a sharp ‘bending’ motion of the
molecular principal axis when viewed from the front xy-
plane. According to this curve, there are two stationary
points along the molecule, symmetrically placed at approxi-
mately one fourth of the length from each end. The trans-
verse fluctuations, i.e. (u,(2, x)), do not exhibit a pronounced
collective pattern, and therefore are not shown here. Results
from the second vacuum trajectory as well as that in solution
showed, however, pronounced collective features in
(uy(2,x)) strikingly similar to those of Fig. 6(b), while no
collective pattern was detected in (u.(2,x)). This inter-
change of the two axes in the two runs, in relation to the
effect of the second mode, suggests that the mechanism of
motion induced by the second mode is the bending of the
longitudinal axis of the molecule without discrimination of
the lateral (y) or transverse (z) directions.

The shear components (u,(2,2)) and (u,(2,y)) of D(2)
exhibit a rigid body rotation of the molecule, similar to
that of the first mode illustrated in Fig. 5. However, while
the rotations in the first mode are counterclockwise when
viewed along the negative x-axis, those of the second mode
are clockwise. Thus, the two modes lead to rotations of
opposite sense. This is expected because overall rotations
of the molecule are prevented in the simulations. The shear
strain component €,, obtained from (u,, + u.,)/2 is again
approximately zero, verifying that a rigid body rotation is
driven by this mode.

(iii) Effect of the third mode. In the third mode, as well as
in the higher modes, the motions of the molecule become
less featured. The collective motions are not as clear and
well defined as those in the first two modes. The correlation
time 73 for the third mode is found as 23.0 ps, as will be
shown below. Two typical motions worth noting are shown
in parts (a) and (b) of Fig. 7. Part (a) displays the lateral
fluctuations of C%-atoms along the x-axis. The solid curve
through the data shows a pronounced ‘wagging’ of domain I
while domain II exhibits negligible cooperativity in this
direction. This behavior extracted from one of the vacuum
simulations was observed to be inverted in the other two
runs (vacuum and explicit solvent runs): mainly a wagging
motion in the y-direction was undergone by the domain II,
while domain I exhibited large amplitude non-collective
fluctuations. Thus, in the third mode, either the first or the
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Fig. 7. Shear motions induced by the third slowest mode of a vacuum
trajectory on the slabs perpendicular to the x-axis, as a function of the
position of the slabs (a) lateral displacements, <u>.(3,x)>. (b) Transverse
displacements (u.(3,x)). Jagged and solid curves refer to the results
obtained for individual residues, and the best fitting seventh order poly-
nomials, respectively. Wagging and bending motions are distinguished in
the respective parts (a) and (b).

second domain of the molecule undergoes highly directed
(minimal noise) wagging motions, while the other domain
displays no collective preference. Part (b), on the other
hand, reveals a bending motion, comparable to the one
driven by the second mode (Fig. 6b). The stationary points
in this case are located at about one-third of the overall
length of the molecule.

(iv) Characteristic times of the slowest modes. Each mode
i is characterized by a given correlation time 7;; and con-
sequently all motions induced by a given mode exhibit the
same time dependence, irrespective of their types or ampli-
tudes. Thus, the correlation functions Cj(k;t) associated with
the time-delayed fluctuations of atoms i and j, as induced by
the kth mode, defined as

C;(t, k) = (AR (1o, k). ARty + 1, k) (8)

exhibit the same time decay, C(t,k), provided that they are
normalized with respect to their equilibrium (¢ = 0) values.
The brackets in Eq. (8) refer to the averaging over various f.
Fig. 8 shows, for example, the time decay of the normalized
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Fig. 8. Time decay of correlation functions associated with the fluctuations
of C%-atoms, contributed by the first three dominant modes of motion of a
vacuum trajectory. The ordinate values are normalized in the interval [0,1].
They are representative of the time evolution of auto- and cross-correlations
for the fluctuations of all pairs of C*-atoms.

cross-correlation functions among any two C* atoms for the
first three modes, separately. The correlation times asso-
ciated with the three dominant modes are estimated from
(18]

B r’ C(t,k) — C(o0, k)
=

o C@,k) — C(o0,k) ©)

to be 7 =58.6ps, 7 =380ps and 73 =23.0ps, as
mentioned above, for the vacuum simulation.

(v) Local Dynamics. In the interest of characterizing the
local dynamics of the protein molecule, we introduce the
mobility amplitude of the pth C* atom in the kth mode by
the following expression:

M (k) = up (k) + uly(k) + (k) (10)

Thus, M,(k) is proportional to the amplitude of the fluc-
tuations undergone by the pth atom under the action of the
kth mode. The collective contribution of the first three
modes to the fluctuations of the pth C* atom is described by:

3
M,(1 =k =3)=> M,(k)A; (11)
k=1

where the square singular values A{ are used for weighting
the contributions of the individual modes. Results of explicit
solvent simulations based on Eq. (11) are shown by the thick
solid curves in Fig. 9 as a function of the residue index along
the chain coordinate, starting from the N-terminus. The thin
dashed curve represents the average over the two vacuum
runs. The temperature factors obtained from crystallo-
graphic measurements [7] are displayed by the thick dotted
curve. The amplitude fluctuations from simulations are
normalized so that the areas enclosed by the curves from
simulations are equal to that of the temperature factors.
The distribution curves obtained with the three dominant
modes of motion are more structured than the experimental
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Fig. 9. Distribution of the amplitudes of fluctuations of C*-atoms as a function of residue index along the chain coordinate. The vacuum and explicit solvent
simulation results evaluated using Eq. (11) are plotted together with the experimental temperature factors [7]. The simulation results include only the

contribution of the three dominant modes of motion identified by SVD.

one, particularly in the case of vacuum simulations. This
difference may be attributed to the fact that the theoretical
curves are obtained on the basis of the slowest three modes,
only, after filtering out all the noise induced by the higher
frequency modes, which would otherwise randomize the
fluctuation behavior. On the other hand, the elimination of
uninteresting modes provides a clear picture of the collec-
tive motions, and emphasizes the correlations between
segmental motions [19-22].

The fluctuation behavior obtained from the simulation
with explicit solvent are found to be in closer agreement
with experimental than that obtained from the vacuum
simulations. Previous simulations have shown that the
presence of solvent smoothes out the collective motions,
which is also confirmed by the present results [22].

5. Conclusions

A new method is proposed for extracting information on
the global conformational deformations of macromolecules
based on a modal decomposition of MD trajectories. Cal-
culations are performed for a protein molecule, CD4, around
its native state, and the effect of the dominant non-linear
modes on the deformation of the molecule along the
molecular principal axes is determined. Several types of
normal and shear deformations are identified, which can
be described as wave-like, wagging, wiggling, bending,
and breathing motions, and rigid body rotations. These
motions give rise to a complex distribution of intra-
molecular strains. Comparison of the results from vacuum
simulation with those performed in solution shows that the
net effect of solvent is to smoothen the distribution of resi-
due fluctuations improving the overall agreement with the
experimentally measured thermal fluctuations.
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Appendix A. Principal coordinate representation

In this Appendix, a straightforward computational
scheme is developed to identify the principal axes of the
moment of inertia tensor of the molecule. Let Ry be the
time-averaged position vector of the ith backbone carbon,
the o carbon, of the protein in a Cartesian coordinate
system, Xxgyozo, for 1 =i =n. A centroidal coordinate
system, X,7,7Z, is defined with the respective axes parallel
to XgYoZo, in which the mean position vectors R; are obtained
from the expression:

2. Ry

R; =Ry — — (A1)

The centroidal coordinates of the molecule may be orga-
nized in the 3 X n configuration matrix

(A2)

=
I
=i
<
(i)
~<i
)

The configuration matrix R may be decomposed into the
product of three matrices, using the SVD technique [10]

- - = _T
Ri31 = Upxs A 3x31 Vi (A3)

where, the subscripts in brackets denote the dimension of
each matrix, U and V are the matrices of the LSVs and
RSVs of R, respectively, and A is the diagonal matrix of
the three singular values A; of R. Multiplying both sides of
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Eq. (A3) by its transpose leads to
XX VEE N
I=RR' = Z}Ei}_}i Z)_’zz Z)_’ifi

inzi Z)_’izi ZZ?

Defined in this manner, I is the moment of inertia tensor
per unit mass in the centroidal coordinate frame. The tensor
U" transforms from the centroidal coordinate frame X9, 2
to the frame xyz spanned by the singular directions or LSVs
of R. The coordinate system xyz is the principal frame asso-
ciated with the investigated molecule. Premultiplication of
I by U" and postmultiplication by U yields the diagonal
tensor A 2, the elements of which are the principal compo-
nents of I. Thus, the principal axes of I coincide with the
singular directions of R.

AT" (A4)

I
]
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