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An analytical solution to the master equation governing the conformational dynamics of linear
polymer chains is formulated. Symmetric chains with N bonds subject to independent
rotational potentials are considered. The eigenvalues of the transition rate matrix, which
characterize the frequencies of the various relaxation modes, and the corresponding
eigenvectors and eigenrows are obtained in closed form. A simple recurrence equation permits
one to express the eigenvalues of the N-bond motion in terms of the nonzero eigenvalues
associated with the isomeric transitions of single bonds. This leads to a clear understanding of

the increase in conformational mobility with N.

INTRODUCTION

The dynamics of a polymer chain result from coordinat-
ed motions of its bonds. The types of bond motions investi-
gated in the present work are torsional rotations about the
covalent backbone bonds. Within the approximation of the
rotational isomeric state model,! the rotational motions, or
rotameric transitions, of a bond take place from one isomeric
state to another. The present work investigates the time evo-
lution of configurational changes of a polymer chain result-
ing from rotameric transitions of the backbone bonds.

The problem of the dynamics of a chain finds an exact
analogy with the time-dependent statistics of the Ising mod-
el. The latter was treated first by Glauber® where the transi-
tion probabilities of a spin depend on the states of the neigh-
boring spins. The three distinct configurations of three
adjacent spins are shown in Fig. 1(a). Although the central
spin is up in all three cases, three distinct configurations
result from the relative orientations of the first neighbors.
Similarly the three states (trans t, gauche* g*, and
gauche~ g~ ) of a central bond in a group of three consecu-
tive bonds in a polymer chain are shown in Fig. 1(b). In
analogy to the spins of Fig. 1(a), the three states #, g *, and
g~ for the central bond are defined on the basis of the rela-
tive orientations of its first neighbors. Thus the transition
probabilities of the middle bond depend on the configuration
formed by the group of three consecutive bonds. This prob-
lem is intrinsically analogous to that of the spins shown in
Fig.'1(a).

The dynamics of polymer chains where the sequence of
bonds are idealized as the spins of the Glauber model has
been treated by several authors.>® These studies treat the
one-dimensional spin picture of Glauber at various levels of
approximation by solving the relevant master equation and
obtaining time correlation functions. None of these treat-
ments however, incorporate the actual structural param-
eters of the real polymer chain into the formulation.

A mathematical formalism where the structural param-
eters of the real polymer chain (such as torsional energies,
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bond angles, loci of energy minima, etc.) can be incorporat-
ed into the dynamics of the chain is given by Jernigan.” The
method, which may be regarded as an improved version of
the Glauber treatment is essentially an extension of the equi-
librium rotational isomeric state calculations to include time
effects. The model rests on the formulation of the master
equation and calculating its eigenvalues numerically to ob-
tain the time delayed conditional probabilities for a sequence
of Nbonds. This model, referred to as the dynamic rotational
isomeric state (DRIS) model, was subsequently adopted
and improved for the interpretation of various phenomena in
polymeric systems resulting from local orientational dynam-
ics.87

In the present study, we obtain a closed form solution to
the master equation of the DRIS model which so far has been

(b)

FIG. 1. (a) Three different configurations of three adjacent spins. The cen-
tral spin is up in all three cases. (b) The three states, #, g+, and g~ for the
central bond in a group of three consecutive bonds.
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treated only numerically. In addition to introducing a signi-
ficant amount of economy in computation time, the present
analytical treatment provides a way of better understanding
and improving the DRIS model.

THEORY
The model and assumptions

An arbitrary configuration of a chain with N bonds is
shown in Fig. 2. Bonds are numbered from 1 to NV as indicat-
ed. A coordinate system xyz is rigidly affixed to the first bond
with the x axis coinciding with the bond direction. We as-
sume that each bond may be in any one of three isomeric
states z, g+, and g —. Extension to a larger number of iso-
meric states per bond is straightforward. The sequence
shown in Fig. 2 represents either a chain of & bonds or a
portion of a longer chain with tails on both ends. The se-
quence of N bonds is referred to as the mobile group.

The present treatment is based on the following three
assumptions: (i) Only a single transition at a time is consid-
ered; (ii) bonds are subject to independent rotational poten-
tials; (iii) the torsional potential is symmetric.

The first assumption has been the subject of various
theoretical and experimental studies over the last two dec-
ades. On the theoretical side the problem has been addressed
most thoroughly by Helfand who classifies the types of
orientational motions into three groups.'® The first leaves
the tails of the mobile group unchanged. Those are coordi-
nated motions and are alternatively referred to as crank-
shaftlike motions.'” Such motions require simultaneous ro-
tations of two skeletal bonds and hence are opposed by
stronger internal effects. On the other hand, experimental
investigations show™ that the activation energies measured
for long chains in dilute solution equate to a single barrier
crossing at a time. These observations thus discard crank-
shaftlike transitions from the list of most probable motions.
A second type of motion is characterized by pure translation
of the tails. They take place cooperatively such that a single

FIG. 2. An arbitrary configuration of a chain with N bonds. A coordinate
system xyz is rigidly affixed to the first bond with the x axis coinciding with
the bond direction.

bond rotation is immediately followed by a counterrotation
of a second neighbor. A rigorous introduction of such corre-
lated motions into the dynamic scheme requires a more de-
tailed treatment than that undertaken in the present study.
The analysis of those correlated motions is carried out in the
work of Hall and Helfand®> through the use of Pauli spin
matrices. A similar investigation according to the dynamic
rotational isomeric state formalism is currently under
study.”® Brownian dynamics simulations of Helfand and
collaborators®'2* show that about 30% of conformational
transitions belong to this group of correlated motions. The
most common mechanism of transitions is, however, ob-
served to be isolated single bond trans-gauche-type transi-
tions in which the large swinging of the tails are avoided by
compensating fluctuations of the various degrees of freedom
of the chain. Such distortions among which the bond tor-
sional potentials are the softest minimize the motion of the
chain. A recent study by the dynamic rotational isomeric
state scheme has also led to similar conclusion.!* Under the
light of the theoretical and experimental evidence cited, sin-
gle bond transitions may be a reasonable starting point for
the local dynamics of chains.

The second assumption of independent bond potentials
forms the basis of the present model. The effect of neighbor
dependent potentials may approximately be introduced into

- the present formulation through equilibrium probabilities.

This has been done previously by Jernigan’ and by two of the
present authors.®

General formulation

The transitions over a single bond are represented by the
following master equation:

dPW(1)/dt = AVPWV (). @))]

Here, PV’ (¢#) represents the vector of probabilities for the
single bond

P (1) = col(p,,pg .0, )s (2)

where p,, p,, and p,- represent the probabilities of the three
states trans, gauche* , and gauche ™ , respectively. The su-
perscript in parenthesis in Eqgs. (1) and (2) signifies that a
single bond is being considered. The transition rate matrix
A® is of the following general form:

—2r, 7 r

gt gt
A(]) = rtg - (rgt + rgg“ ) rgg_ 1(3)

T g — (g +r,-)

where 7, represents the rate constant for the transition from
state / to state j. Here 7; is related to the energy barrier E;
between states i and j in a high-friction medium by the
Kramers expression®?

r, = (yy*)‘/2(217'§)_l exp( —E,J/RT)y (4)
where ¥ and y* are, respectively, the curvature of the tor-
sional energy minimum at the ith state and that of the energy
barrier between the ith and jth states. Because of the symme-
try of the potential, r,, = N L and Tee~ = Tg-gr

The probability vector P’ (r) for a sequence of N
bonds is written as
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PV () =PV (nePi () e "

ePy) (1) @ Py (1), (3

where ® denotes the direct product. The subscripts in Eq.
(5) as well as in the subsequent equations identify the loca-
tion of the bond along the sequence. Differentiating both
sides of Eq. (5) with respect to time leads to the master
equation for the sequence

1 N _
det €3] =j;1 [(13)0(’_”@1\}”

® (13)e(N_j)]P(N)(t)EA(N)P(N)(I). (6)

Here, I, is the third-order identity matrix and (I, ) ®” signi-
fies the direct product of I, with itself / times. The rate ma-
trix AY for the sequence of N bonds is defined by Eq. (6) as

N
AP =3 (1)*U"PeAN e (I,) V-2, (7

j=1
Expansion of the sum in Eq. (7) for N = 2, 3,... leads to the
following recurrence expression:

A? = AV eI, + I, 8AD),
AP =AVeL el + I, 8AV I, (8)
+L, eI, gAY
=AVeI, + I, 8 AP,

where I, is the kth order identity matrix. Continuing to
write Eq. (8) for longer sequences leads to

AP =ADeL,  +L,8AN Y, (9)

which may be written in terms of Eq. (3) in block form as

AN=D 2 L, Feelon_ I
A — v AN — (ry 4 7 Yy Fog-Tan—1 (10)
[ W o~ Ly AN (4 P ) S

Solution of the eigenvalue problem

The secular equation for A%Y is
det(AM — A1)

AN=D (A L2 L, I %
= rlon_ AN=D (AW 4, + 7w T~ Livn =0,

Fglno [N SV AN=D (AN 4 r, + RN}
(11)

where AY denotes the eigenvalues of AY. Inasmuch as the columns sum up to zero in transition rate matrices associated

with stationary processes, Eq. (11) may be simplified as

- - I N—-1
det(A(N_” *A(N)va_,)\ (rtg Teg ) 3

Adding the second row of Eq. (12) to the first leads to

det(AN-D _ AN, ) ’

which finally yields
det(AY — AML,)

=det[AY"D — (AN — AL ]
Xdet[AY =D — (AN — 2,)L_, ]

xdet[A‘”—”— (AW — AL ] =0, (14)

where

— AT L (AN pry 41 g )

_AWN-D + (A(N) + 2rtg + rgt)IsN—l 0
_ A(N— 1) + (A(N) + rgt + rtg —+ rgg' )13/»/71

A(N— 1y _ (A(N) + rgt -+ 2rgg_ )ISNﬁl —O
—AW=D L (A ™ +2rgg_ )I3N_' o
(12)
(N—1) (V) ‘ =0,
— AN+ (AN g 427
(13)
f
/11 =O’
,12 = -— (2r,g + rgr)’
Ay = — (ry +2rg,-), (13)

are the eigenvalues of the single bond transition rate matrix
AV, Equation (14) shows that the 3" eigenvalues A*Y of
A™ include the 37~ ! eigenvalues AV~ of AN~ 1 3N—1
eigenvalues A““~ 1 increased by A, and 3V~ ! eigenvalues
AY =V increased by 4,. Equation (14) may be written as a
set of secular equations
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det[AN=D — (A® — AL 1] =0,
det[A‘N' b (A(N) —/{2 )I3N——l ] = O;
det[ AN =D — (AW — 2,)L,. ] =0.

(16)

Consideration of Eq. (16) leads to the following recurrence

equation for the 3" eigenvalues A"
AD =4, i=123

i

and

A}N—l)+il’
AW ={AN=D 44,
A;N—”"‘I"i;;,

i=1,.3""1
P=3""141,.2:3%"1
i=2-3-141,..3%

(17)

with
j=12.3""1

For a given N, the above recurrence equation shows that
there are only three nondegenerate eigenvalues, the remain-
ing ones being degenerate of various orders. Although Eq.
(17) uniquely determines all of the eigenvalues, it does not
specify the degeneracy of each explicitly. Below, we present
an alternate recurrence equation that is suitable for calcula-
tions. For this purpose we observe that the eigenvalues given
by Eq. (17) may be obtained from the expansion of a
trinomial expression

N
(" + e+ eV = S (Z)(e’lz 4 gkt N =R
[4]

k=

N k k o
=2 2 (N)( )eA “0, (18)
k=01=0 k l
where A“™ (k,]) is the eigenvalue given by
ANED =14, + (k—=DA, + (N—k)A,, O<I<k<N.
(19)
Each A™ (k,]) is N(k,I)-fold degenerate with
N(kD) =(;(V)(];)=N!/l!(k—l)!(N——k)! (20)

It may be shown that there is one-to-one correspon-
dence between A of Eq. (17) and A (k,]) of Eq. (19).
Equation (6) may be solved formally to yield

PM (1) =B™ exp(A™) [BV] PV (1=0)

=CVMPM(t=0), (21)

where A is the diagonal matrix of eigenvalues A{"V, i = 1

to 3Nof AN, B is the eigenvector matrix, [B¥] ~ 'isthe

inverse of B or the eigenrow matrix, and
CP=B™ exp(AMr) [B™]

is the conditional probabilities matrix.
The three eigenvettors of A’ corresponding to eigen-
values A, ,4,,4; are u{", u{", and u§", respectively,

(22)
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1 "
ul =7 |, (23a)
2'%g+r§t rtg
1
(1) 2
—1/2
0
[¢)) 1
wP=—9| 1 (23¢)
V2| 4

The eigenvectors u{®’, u$"’, and u" are normalized to unity
for convenience. The eigenvectors of AV, i.e., the columns
of B, may be written in terms of u{", u$"’, and u{"’ accord-

ing to the following symbolic expression:

(I)Q(N—l\)

® (k-1
u M (k1) = uf oul"

1 ® ()
eul

O<I<k<N

weuPe - suileuiPeui’e - euienieui’ e ou!’

= N

(N — k)times (k — Htimes (D)times

(24)
where the second line explains the symbolic notation given in
the first line. For given N, k, and /, Eq. (24) yields N(k,/)
eigenvectors obtained from all possible permutations of
(N —k)ui"’s, (k— Dul'’s, and l{"’s. All of the N(k,])
eigenvectors u'™ (k,/) obtained in this manner correspond
to the same eigenvalue A" (k,1), which is N(k,/)-fold de-
generate. There is an ambiguity in the calculation of eigen-
vectors corresponding to a given degenerate eigenvalue since
any linear combination of these N(k,/) eigenvectors is also
an eigenvector.

The eigenrows of A" corresponding to eigenvalues
AAaAds are v{V, v, and v§", respectively,

et g,

v = (25a)
2rp + 1y

Vél)z—ﬁ (2r1g9_rgl9_rgl)’ (25b)
V2(2r, + 1)

v =L 01,-1). (25¢)
V2

The eigenrows of AV, i.e., the rows of [B‘™] ~', may be
written in terms of v{", v§{"’, and v{"’ by an expression analo-

gous to Eq. (24) as

V(N)(k’l) — vg])@(N*k) ®v£1)ﬂ9(l\'7!) ®v§])®(/)

0<I<k<N. (26)
In writing Egs. (24) and (26), it is assumed thatu{" and v{"
are normalized according to

vV =6 27

ij?

where the product on the left-hand side of Eq. (25) is the
scalar product and §; is the Kronecker symbol.
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Equations (22), (24), and (26) represent the complete
formulation of the N-chain dynamics in terms of the eigen-
values, eigenvectors, and eigenrows of the transition rate
matrix A" of a single bond. If only stationary events are
considered, the vector PV (¢ =0) in Eq. (21) may be
equated to the equilibrium probability vector PV (z = o).
Neighbor dependence may be incorporated into
P™ (t = «) as is commonly done’ in the equilibrium sta-
tistics of polymer chains.

The average (f(z)) over all possible configurational
transitions at time ¢z, for a function f;; associated with the
transition from the jth to the ith state, is expressed in the
form!!

3N

=3 32 32 B

n=1Lj=1i=1
Xexp{A[P}[B”] 7PV (0)f] (28)

where A(" is the nth eigenvalue of A™, P (Y (0) is the equi-
librium probability of the jth configuration, B (" is the ith
element of the nth eigenvector, [B ! ] ~ ' is the jth element
of the corresponding eigenrow. It should be recalled that
A'™ is obtainable either from repetitive use of Eq. (17) or
from Eq. (19). Each (k,/) pair in the latter is representative
of N(k,l) degenerate eigenvalues whose distinct eigenvec-
tors and eigenrows are found, respectively, from the various
permutations of Eqs. (24) and (26). For a given n in Eq.
(28), the summation in the square brackets require the stor-
age of only the nth column of BY’ and the nth row of
[B] !, which may conveniently be generated by using
Eqgs. (24) and (26).

It should be noted that, under the assumption of inde-
pendent bonds, the whole dynamics is governed by that of
single bond probabilities, and all properties can be derived
from that. Same behavior is predicted by Hall-Helfand in
the absence of correlated transitions. As an alternative to the
direct product language adopted in the present work, Hall
and Helfand used Pauli matrices and commutativity proper-
ties in their treatment of isolated transitions.

CONCLUSION

A mathematical formulation is developed in the present
study to obtain a closed form solution to the master equation
governing the conformational dynamics of polymer chains
with bonds subject to independent rotational potentials. The
recurrence equation (17) or equivalently Eq. (19) provides
a simple, concise, and useful method for evaluating the
eigenvalues A", i = 1 tov", in N-bond chains, with v states
available to each bond. Inasmuch as — A{" physically rep-
resents the frequency of the ith relaxational mode contribut-
ing to conformational transitions, its dependence on chain
length is essential in understanding the change in orienta-
tional mobility with the size of the moving segment. The
following two important conclusions are drawn from the
above analysis. (i) The v — 1 nonzero eigenvalues governing
single bond transitions persist for all N, as the slowest orien-
tational modes contributing to relaxation. They are N-fold

degenerate for N-bond sequences. (ii) However, as the chain
length increases they are supplemented by new, faster
modes. The fastest v — 1 modes are nondegenerate and have
frequencies proportional to N. The increase in conforma-
tional mobility with N, or equivalently, the decrease in the
so-called “internal viscosity” of intramolecular origin,?®
was first called to attention by Kuhn,>’ as pointed by
de Gennes.?® This analysis clearly confirms the creation of
new, faster relaxational modes with increasing N. However,
as NV increases, this effect is more than counterbalanced by
the intermolecular viscous resistance opposing the motion.
With the present better understanding of internal conforma-
tional dynamics, the relative strength of the two factors, in-
tramolecular and intermolecular, may be more exactly as-
sessed.

Another practical advantage of the present formulation
is the easy determination of the eigenvectors and eigenrows
for the N-bond sequence, simply by the direct product of
those for single bond, as expressed by Eqs. (24) and (26).
The possibility of evaluating eigenvectors and/or eigenrows
of order v" without inversion or similarity transformation of
large transition rate matrices is particularly useful in the
computation of average transient properties, (f(¢)), accord-
ing to Eq. (28).
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