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Abstract
With advances in structure genomics, it is now recognized that knowledge of structure alone is
insufficient to understand and control the mechanisms of biomolecular function. Additional
information in the form of dynamics is needed. As demonstrated in a large number of studies,
the machinery of proteins and their complexes can be understood to a good approximation by
adopting Gaussian (or elastic) network models (GNM) for simplified normal mode analyses.
While this approximation lacks chemical details, it provides us with a means for assessing the
collective motions of large structures/assemblies and perform a comparative analysis of a
series of proteins, thus providing insights into the mechanical aspects of biomolecular
dynamics. In this paper, we discuss recent applications of GNM to a series of enzymes as well
as large structures such as the HK97 bacteriophage viral capsids. Understanding the dynamics
of large protein structures can be computationally challenging. To this end, we introduce a
new approach for building a hierarchical, reduced rank representation of the protein topology
and consequently the fluctuation dynamics.

1. Introduction

With recent advances in structural genomics, a considerable
fraction of the complete set of folds assumed by proteins seems
to be within reach. While the newly elucidated structures
provide significant insights that could not be acquired from
the examination of sequences alone, an emerging view is
that knowledge of structure alone may not be sufficient
in many cases for assessing the mechanism, or origin, of
biomolecular function. Proteins do not function as static
entities or in isolation, but they are engaged in functional
motions and interactions both within and between molecules,
which permit them to achieve their function. An enzyme
would not bind a ligand, for example, unless it possessed
the conformational flexibility to accommodate the binding
molecule and/or its interaction energy by suitable changes
in conformation. These changes can range from single amino
acid side chain reorientations (local) to concerted domain–
domain motions (global) that would bury, for example, the
ligand in a cleft between two domains.

While motions on a local scale can be explored to a
good approximation by conventional molecular simulations
with full atomic potentials and explicit solvent, those at the
global scale are usually beyond the range of such simulations
and are more efficiently, and in some cases more accurately,
assessed by simplified models used in analytical methods. A
prime example of the utility of such coarse-grained approaches
is the normal mode analysis (NMA) of ribosome using an
elastic network (EN) model [1, 2]. These studies provided
valuable insights on the complex machinery of the ribosomal
complex, consistent with experimental data. They furthermore
set the framework for similarly combining experimental
and theoretical studies to explore the dynamics of other
supramolecular structures, such as the viral capsid [3–5].

Many studies now demonstrate the utility of methods
based on EN models [6]. EN-based NMA are used not
only for exploring the structural dynamics of biomolecules
and their complexes, or extracting the dominant modes of
motions and key sites that control their collective machinery,
but they are also being used in the reconstruction or refinement
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of low-resolution cryo-EM structures [7–9] and improving the
efficiency of molecular dynamic simulations [10–12]. Yet,
as the application and extension to more complex processes
or larger systems is undertaken, it becomes increasingly
expensive, from both computational memory and time
viewpoints, to adopt the residue-based EN models that have
been originally introduced [13–18]. Instead, coarse-grained
models have been adopted. Examples are the hierarchical
coarse-graining (HCG) approach in which sequences of m

consecutive amino acids are condensed into unified nodes,
thus reducing the computing time and memory by a factor
of m3 and m2 [19]; adopting a mixed coarse graining in
which the substructures of interest are modeled at single-
residue-per-node level and the surrounding structural units at
a lower resolution of m residues per node; representation of
the structure by rigidly translating and rotating blocks (RTB)
[20] or the so-called block normal mode analysis (BNM) [21].

In this paper, we present two recent applications of the
Gaussian network model (GNM) [13, 14] and also introduce
an extension aimed at improving the accuracy and efficiency
of the method when exploring supramolecular structures. An
overview of the GNM is presented first, with emphasis on
the significance of the fluctuations and correlations that are
usually computed with the GNM. Section 3 illustrates the use
of the GNM for elucidating the close correspondence between
chemically active (catalytic) sites known from experiments
and key mechanical sites predicted by the GNM. These
findings emphasize the functional role of a coupling between
chemistry and mechanics for enzymatic activity suggested by
experiments [22, 23] and provide insights into the mechano-
chemical nature of protein’s function. In section 4, we analyze
the HK97 bacteriophage procapsid, a supramolecular structure
composed of ≈105 residues. The large size of the structure
precluded a residue-level assessment of the global motions
[4, 5]. To improve our understanding of the mechanisms of
maturation of the procapsid, we present a hierarchical coarse-
grained anisotropic network model (ANM) based analysis
[16, 17]. The NMA of supramolecular structures of this size is
a challenging task, even with the use of EN models. In the last
section, we introduce a novel hierarchical clustering algorithm
that provides an efficient means of exploring the collective
dynamics, with minimal loss in accuracy. The approach is
based on a Markov process description of the communication
(or affinity) between interacting residues and has the additional
advantage of including residue specificity via consideration of
atom–atom interactions. We illustrate the validity and utility
of the method by an application to influenza virus protein.

2. The Gaussian network model

The GNM [13] was proposed to explore the role and
contribution of purely topological constraints, defined by the
3D structure, on the collective dynamics of proteins around
their equilibrium configurations. Each protein is modeled
by an EN (figure 1(a)), the dynamics of which is entirely
defined by network topology. The position of the nodes of the
EN are defined by the Cα-atom coordinates and the springs
connecting the nodes are representative of the bonded and
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Figure 1. Description of the Gaussian network model (GNM).
(a) Every residue is represented by a node and connected to spatial
neighbors by uniform springs. These springs determine the N − 1
degrees of freedom in the network and the structure’s modes of
vibration. (b) Schematic representation of the equilibrium positions
of the ith and j th nodes, r0

i and r0
j , with respect to a laboratory-

fixed coordinate system (xyz). The instantaneous fluctuation
vectors ∆ri and ∆rj are shown by the dashed arrows, as well as the
instantaneous separation vector rij between the positions of the two
residues. r0

ij is the equilibrium distance vector from node i to j .

non-bonded interactions between the pairs of residues located
within an interaction range, or cutoff distance, of rc. The
cutoff distance is usually taken as 7 Å, based on the radius
of the first coordination shell around residues observed in
PDB structures [24, 25], and confirmed with an extensive
comparison of GNM-predicted B factors with those observed
by x-ray crystallography [26].

To study the dynamics of such a network, we define
the equilibrium position of a node i by vector r0

i and its
instantaneous position by ri (figure 1(b)). The fluctuation,
or deformation, from this mean position is defined by the
vector ∆ri = ri − r0

i . The deformation in the distance
vector rij that extends from residue i to j is defined as
∆rij = rij − r0

ij = ∆rj − ∆ri . We are interested in the
statistical (ensemble) properties of these pairwise fluctuations,
given in a matrix form: ∆rij∆rT

ij . Using the components of
the deformation vector

∆rij = [(�xj − �xi) (�yj − �yi) (�zj − �zi)]

= [�xij �yij �zij ],

the fluctuation matrix can be written as

∆rij∆rT
ij =

�xij�xij �xij�yij �xij�zij

�yij�xij �yij�yij �yij�zij

�zij�xij �zij�yij �zij�zij

 . (1)

GNM makes two assumptions on the distribution of these
pairwise fluctuations: first, they are isotropic, and second, the
distribution is Gaussian. The isotropic assumption implies that
the variations in �xij ,�yij and �zij are independent of each
other and hence the fluctuation matrix is diagonal

∆rij∆rT
ij =

�xij�xij 0 0
0 �yij�yij 0
0 0 �zij�zij

 . (2)

Next, the potential of the network VGNM is defined as a function
of the fluctuation covariance arising from interacting residue
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pairs,

VGNM(i, j) = γ

2
Tr

(
∆rij∆rT

ij

)
H

(
rc − ∥∥r0

ij

∥∥)
= γ

2
∆rT

ij∆rijH
(
rc − ∥∥r0

ij

∥∥)
= γ

2
{(�xij )

2 + (�yij )
2 + (�zij )

2}H(
rc − ∥∥r0

ij

∥∥)
.

(3)

Here VGNM(i, j) is the contribution to the overall potential
from a residue pair (i, j), γ is the force constant taken to
be uniform for all network springs, H(·) is the Heavyside
step function that is 1 only if the argument is positive and
zero otherwise, ‖·‖ denotes the norm of a vector and Tr(·)
designates the trace of the enclosed matrix. The Heavyside
function allows bonded and non-bonded interactions between
residues that are within a cutoff distance rc from each other.

A convenient way to capture the interactions between all
residue pairs in the network is to define a Kirchhoff matrix Γ
as

Γij =
−H

(
rc − ∥∥r0

ij

∥∥)
, i �= j,∑

j ( �=i)
Γij , i = j.

(4)

In terms of individual fluctuations, the Kirchhoff matrix
simplifies the expression for the potential of the entire network
of n residues to

VGNM = γ

4

 n∑
i,j

Γij {(�xi − �xj)
2

+ (�yi − �yj)
2 + (�zi − �zj )

2}


= γ

2
[∆xTΓ∆x + ∆yTΓ∆y + ∆zTΓ∆z]. (5)

The fluctuation vectors ∆xT,∆yT and ∆zT have components
[�x1 �x2 · · · �xn], [�y1 �y2 · · · �yn] and [�z1 �z2

· · · �zn], respectively. As pointed out above, the fluctuations
predicted by the GNM are isotropic and hence there is no
information on the ‘directions’ of motions in different modes,
but just their sizes. In order to assess the directions of motions,
an extension of GNM has been introduced in [16, 17] called
ANM. It is identical to a NMA with an elastic network model at
the Cα level [18]. The corresponding potential, VANM, differs
from VGNM, in that the term ∆rT

ij∆rij = (
rij −r0

ij

)T(
rij −r0

ij

)
is replaced by

(‖∆rij‖ − ∥∥∆r0
ij

∥∥)2
. While the second

derivatives of VGNM with respect to the x, y and z components
of the fluctuation vectors lead to a diagonal matrix with
identical elements (i.e. uniform force constants along the
three directions), the same operation applied to VANM yields
anisotropic fluctuations. Thus, GNM cannot be used for
predicting the directions of fluctuations, as protein motions
are not isotropic, but it can provide an accurate estimate of
the size of fluctuations. ANM, on the other hand, provides
information on the directions of fluctuations. The size of the
matrix (Hessian) decomposed in ANM is 3N × 3N , which
leads to an increase in computing time by about 33.

The overall potential VGNM gives rise to a probability
distribution over fluctuations ∆r that is Gaussian,

p(∆r) = p(∆x)p(∆y)p(∆z),

with

p(∆x) = 1

Z∆x

exp

{
− γ

2kBT
∆xTΓ∆x

}

= 1

Z∆x

exp

{
−1

2
∆xT

[
kBT

γ
Γ−1

]−1

∆x

}
(6)

and the partition function associated with the fluctuations along
the x direction, Zx, is given by the determinant

Z∆x = (2π)N/2

[
det

(
kBT

γ
Γ−1

)]1/2

.

Because of the isotropic assumption, similar expressions are
valid for p(∆y) and p(∆z). So, the partition function for
GNM can be written as

Z∆r = (2π)3N/2

[
det

(
kBT

γ
Γ−1

)]3/2

. (7)

From the Gaussian distribution, we can infer the correlations
in the residue fluctuations as〈

∆rT
i ∆ri

〉 = 3kBT

γ
Γ−1

ii , (8)

and the cross-correlations between residues as〈
∆rT

i ∆rj

〉 = 3kBT

γ
Γ−1

ij . (9)

The determinant of the Kirchhoff matrix Γ is 0 and hence care
must be taken in computing the inverse Γ−1. One approach
is to diagonalize the symmetric Γ matrix and obtain an
orthogonal eigenbasis U and a diagonal eigenvalue matrix Λ,

Γ = U ΛUT. (10)

The eigenvectors describe the modes of free vibration
accessible to structures in their native conformations. The
eigenvalues determine the mode frequencies. The first
eigenvector is constant, indicative of an absence of internal
motions and the corresponding eigenvalue is 0. Ignoring the
first eigenvector, the pseudo-inverse of the Kirchhoff matrix
can be written as

Γ−1 =
N∑

k=2

λ−1
k uku

T
k , (11)

from which the residue correlations can be extracted,〈
∆rT

i ∆ri

〉 = 3kBT

γ

N∑
k=2

λ−1
k u2

ik, (12)

〈
∆rT

i ∆rj

〉 = 3kBT

γ

N∑
k=2

λ−1
k uikujk. (13)

Equation (11) expresses the inverse Kirchhoff matrix
as a sum over the n − 1 non-zero mode contributions. In
most applications, it is of interest to extract the contribution
of the most cooperative, usually the slowest, modes. The
(normalized) distribution of residue squared mobilities in
mode k (also called the shape of mode k) is simply given
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Figure 2. Color-coded ribbon diagrams for two enzymes, β-lactamase (1BLC) (a) and penicillopepsin (1BXO) (b), illustrating the mobility
of residues in the first (lowest frequency) GNM mode. The color code is blue–red–yellow–green in the order of increasing mobility. Both
enzymes contain an inhibitor (shown in space filling, gray) bound near the most constrained (lowest mobility) region. (c) and (d)
Corresponding square fluctuation profiles and positions of catalytic and inhibitor-binding residues. See table 1 for the list of chemical (from
experiments) and mechanical (from computations) key residues. Residues directly involved in catalytic function at active sites are shown by
the green open circles, inhibitor-binding residues are shown by the red squares and residues serving both catalytic and inhibitor-binding
functions are marked by the orange diamond.

by the diagonal elements u2
ik , for i = {1, . . . , n}, of the matrix

uku
T
k . Below, we illustrate the slowest mode shapes of two

enzymes (section 3) and the effect of a subset of dominant
modes on HK97 procapsid dynamics (section 4), and discuss
their relevance of these modes of motion to biological function.
Finally, it should be noted that the GNM methodology cannot
describe the transition between two states separated by an
energy barrier, but applies to fluctuations in the neighborhood
of a single energy minimum, the latter being approximated by
a quadratic functional form.

3. Catalytic site recognition by GNM

Our recent study demonstrates the existence of a coupling
between enzyme catalytic residues and protein mechanical
hinge sites [27]. The dynamics of a set of 98 enzymes
(93 monomers and 5 multimers) representative of different EC
classes was analyzed with the Gaussian network model (GNM)
and the mobilities of catalytic residues were investigated.
The experimentally identified catalytic residues are defined,
following [28, 29]. A given residue is catalytic if (i) it is
directly involved in a catalytic function, (ii) it affects the
residues or water molecules directly involved in catalysis,
(iii) it can stabilize a transient intermediate, or (iv) it interacts
with a substrate or cofactor that facilitates the local chemical
reaction. The inhibitor-binding sites, on the other hand,
are those reported in previous experimental studies to bind

inhibitors (ligands). They may, or may not, overlap with an
active site. The result showed that more than 70% of the
catalytic residues in examined monomeric enzymes are found
to be co-localized with the global hinge centers predicted
by the GNM. Global hinge centers are taken to be the zero-
crossings in the low-frequency mode shapes [27]. Moreover,
94% (87/93) of the examined enzymes have at least one global
hinge center in their active site.

If one focuses on the lowest frequency modes and
normalizes the associated square fluctuations of residues
(equation (12)) in each protein and rate the most mobile residue
as 100% and the least as 0%, a low translational mobility
(<7%) is observed for the catalytic residues consistent with
the fine-tuned design of enzymes to achieve precise mechano-
chemical activities. Two illustrative examples are presented
in figure 2. The corresponding chemical and mechanical
properties are listed in table 1. The ribbon diagrams are
color coded to reflect the relative mobilities of the residues
in the slowest mode of motion (k = 2) in each case, and
the curves display the normalized distributions of square
mobilities induced in these modes. The odds ratio in the
last column shows the enhancement p/p0 in the probability
p of finding a catalytic residue among the key mechanical
sites, as opposed to that p0 for randomly finding one
among all residues in a given enzyme. On the other hand,
ligand-binding residues, while generally closely neighboring
catalytic sites, enjoy a moderate flexibility to accommodate
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Table 1. Correlation between functional sites from experiments and computations.

Experimental datac Theoretical datad,e

PDBa Protein Sizeb Catalytic residues Ligand-binding residues Key mechanical sites Odds ratio

1BLC β-Lactamase 31–290 70 69, 70, 234 65–72, 206–215 6.2
1BXO Penicillopepsin 323 33, 213 75, 216 146–180 5.3

a 1BLC [30, 31].
b 1BLC PDB coordinates refer to the indicated range.
c Bold face residues have mobility scores <0.10 in GNM mode analysis.
d Hinge residues with mobility scores <0.05, from regions that are at the intersection of positive and negative
displacements in slow mode 2.
e Odds ratio = p

p0
is the probability of finding a catalytic residue among key mechanical sites in comparison to that among

all residues.

the incoming substrates. Nevertheless, highly mobile ligand-
binding residues are occasionally observed in the cases for
binding a wide range of ligands or serving as part of the
proton-shuttling machinery. These findings could establish
new criteria for assessing drug-binding residues and lessen the
computational burden of substrate docking searches.

4. Elastic networks of supramolecular structures:
viral capsid dynamics

There are several reasons for the increased computational
efficiency of residue-level elastic network models over atomic-
level NMA. First, the number of nodes in the network is
typically reduced by an order of magnitude producing a
decrease of 103 in computing time. Second, the input structure
is assumed to be at a minimum, eliminating the need for costly
energy minimization as a function of all atom coordinates.
However, the analysis of very large structures such as viral
capsids containing over 105 residues still requires specialized
computational techniques due to memory and calculation
limitations.

A typical solution to this problem involves further coarse
graining the structure of interest by assuming that groups of
residues function as a single node [19] or rigid block [20].
Such a reduced model, where each protein that forms the virus
capsid is represented by a single block, has been adopted for a
series of virus to compare their dynamics [4]. An alternative
approach exploits the symmetry of viral capsids to elucidate
local dynamics of a subunit of the capsid structure [32]
but disregards the most cooperative, potentially functional,
symmetry-breaking motions.

Recently, the dynamics of the HK97 bacteriophage viral
capsid including all residues has been analyzed using the
GNM [5]. This capsid contains 420 copies of a single protein
monomer arranged to form 12 pentamers and 60 hexamers.
During maturation, the spherical procapsid (Prohead II) [33]
expands into an icosahedral, mature form (Head II) [34].
Our results provide information on the relative sizes of the
fluctuations of all residues and the contributions to their
mobilities due to different modes of motions. However, the
GNM analysis does not provide information concerning the
directions of these fluctuations. Here we report the ANM
results that have been calculated using a coarse graining of n/6
for the Prohead II structure. Using the method described by

[19], groups of six residues are represented by a single node,
the coordinate of which is identified by every sixth residue
along the sequence.

Panels (a) and (b) in figure 3 illustrate the deformations
accessible by the slowest non-zero mode for the capsid
using this coarse-grained ANM comprised of 17 920 nodes.
The capsid nodes are colored from red (most mobile)
to blue (most constrained) following the size of motions
predicted by this mode, and the two diagrams represent two
alternative conformations between which the capsid fluctuates,
by the action of this mode. This motion is essentially an
elongation/contraction along the vertical axis. The mobilities
are consistent with the slowest GNM mode presented in our
earlier study, a three-fold degenerate mode driving the same
distribution of mobilities along the x, y and z axes. We note
that this is an icosahedrally asymmetric mode: it identifies
a pentamer-centered region at each pole as the most mobile
(red).

As the frequency increases, the associated modes become
more localized and less collective. This is reflected by the
deformations shown for the succeeding low-frequency modes
in figures 3(c)–(f ). The number of mobile regions observed
increase as their sizes decrease. Additionally, because of
the high degree of symmetry in the capsid, many calculated
modes are degenerate (i.e. they have the same frequency). For
example, the modes indicated in figures 3(c)–(f ) are four-fold
or three-fold degenerate, each oriented along a different axis
of the structure. We note that the successive modes activate
different regions of the procapsid. In particular, hexameric
regions are observed to be set in motion in panels (b) and (c),
whereas panels (d) and (e) show a more complex motion that
jointly activates subsets of pentamers and hexamers.

Of interest is to see the result from a subset of dominant
modes. A superposition of the slowest modes indeed
provides an insightful description of the range of deformations
accessible by such global modes. Figure 3(g) depicts the
fluctuations obtained by the superposition of the 11 slowest
modes from the GNM. The combination of these dominant
modes identifies the 12 pentamers as the most mobile (red)
regions in the procapsid, in accord with the icosahedrally
symmetric structure of the capsid. The high mobilities of the
pentamers are in agreement with experimental cryo-EM data
of intermediates between the prohead and head conformations
which indicate a large degree of motion for the pentamers
during expansion [35].
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Figure 3. Dynamics of the HK97 bacteriophage viral capsid using ANM (panels (a)–(f )) and GNM (panels (g) and (h)). (a and b) The
coarse-grained, n/6 ANM of the Prohead II form of this viral capsid represents the 107 520 residues by 17 920 nodes. Deformations along
the slowest (global) mode indicate an extension/compression at opposite poles. The structure is colored such that the most mobile residues
are red and least mobile are blue. (c and d) Representative deformations due to next slowest (degenerate) mode indicate four equally spaced
most mobile regions, rather than two in the slowest mode. (e and f ) This trend of increasing localization and number of patches of mobile
residues continues as one examines higher modes. Representative deformations due to the next slowest (degenerate) mode illustrate a more
complicated motion and begin to suggest a mechanism for maturation of the viral capsid. (g) GNM has been calculated for the entire HK97
viral capsid containing 107 520 residues. The linear combination of the slowest 11 modes, weighted by their eigenvalues, indicates that the
12 pentamers are the most mobile (red) regions. (h) The first non-degenerate (i.e. icosahedrally symmetric) GNM mode (number 31) also
distinguishes the pentamers by their high mobility.

We note that the above-described slow/global modes lack
spherical and/or icosahedral symmetry, and as a result, they
do not correlate, on an individual basis, with the overall
structural change (from an approximately spherical to an
icosahedrally symmetric shape) undergone by the capsid
during its maturation. Comparison of the individual ANM
modes with the experimentally observed structural change
points to the role of a small subset of icosahedrally symmetric
(non-degenerate) modes in effectuating the structural changes
[4, 5].

Figure 3(h) illustrates the mobilities in the first (slowest)
non-degenerate mode computed with the GNM for the full
(all residues) capsid. This mode (mode 31) is icosahedrally
symmetric and also identifies the 12 pentamers as the most
mobile regions. However, because the frequency of mode 31 is
at least three times that of the first 11 modes, its fluctuations are
more localized and its contribution to the potential structural
fluctuations is small relative to that of these slower, asymmetric
modes.

As shown by this study, HCG-based methods can be
useful in exploring large systems. However, the parameters
associated with HCG are arbitrarily set. For example, the level
of HCG is chosen beforehand and the inclusion/exclusion of
bonded/non-bonded neighbors that are equally distant in space
cannot be justified in general. Similarly, in the case of RTB
[20] or BNM [21] approaches, all atomic, or residue, level
information is lost and substructures that may contain internal
degrees of freedom—some of which functional—are assumed
to move as a rigid block. The choice of these rigid blocks
potentially affects or biases the predicted motions. To this end,
in the next section, we introduce a novel hierarchical clustering

algorithm that provides an efficient means of exploring
the collective dynamics, with minimal loss in accuracy. The
approach is based on a Markov process description of the
communication (or affinity) between interacting residues and
has the additional advantage of including residue specificity
via consideration of atom–atom interactions.

5. Hierarchical coarse graining of the
protein topology

It is natural to consider the elastic net in terms of graph theory
and undertake random walks [36, 37]. In particular, each
residue in the protein is seen as a node in a weighted, undirected
graph and the edges in the graph represent interactions between
residues. Using a random walk analogy, we can build
a hierarchical, coarse-grained representation of the protein
graph. The adjacent levels of the hierarchy are connected by
assuming that a random walk undertaken at the coarse scale
induces a random walk, simultaneously, at the fine scale. The
passage between the two levels is ensured by

π = Kδ, (14)

where δ is an unknown probability distribution of length m, K
is an n × m non-negative kernel matrix whose columns are
probability distributions that each sum to 1 and m is low
dimensional (m � n). The kernel matrix acts as an expansion
operator, mapping a low-dimensional distribution δ to a high-
dimensional probability distribution π. Furthermore, if the
random walk reaches an equilibrium distribution δ at the coarse
scale, it will correspond to reaching a stationary distribution
π at the fine scale. The equilibrium distribution π at the fine
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Figure 4. Contact matrix hierarchy for the influenza virus (PDB: 2HMG). The contact matrices, which are otherwise real valued, are
shown here as dot plots to highlight the similarity in the structure of the matrix across the hierarchy. The sizes of the contact matrices are
(a) 1509 × 1509, (b) 647 × 647, (c) 191 × 191, (d) 61 × 61 and (e) 20 × 20.
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Figure 5. Hierarchical eigensolver results (a) comparing eigenvalues λ� from a direct decomposition of the � (circles) with multi-scale
eigensolver spectrum λ (red line). For the direct eigen decomposition, we use the Matlab program svds.m which invokes the compiled
ARPACKC routine [39], with a default convergence tolerance of 1 × 10−10. (b) Eigenvector mismatch:  − diag(|UTU�|), between
eigenvectors U derived by the multi-scale eigensolver and the direct decomposition of U� . (c) Comparing the mean-square fluctuations of
the residues at the finest scale with those obtained from successive levels of coarse graining.

scale is analytically determined by the diagonal elements of
the Kirchhoff matrix Γ. More details will be presented in a
forthcoming paper.

Next, knowing π we can solve the above equation by an
expectation-maximization type algorithm [37, 38]. Knowing
K and δ, we can then derive a coarse-scale symmetric, real-
valued affinity matrix Ã

Ã = (diag(δ)KT)(diag(Kδ)−1)(Kdiag(δ)), (15)

which maintains the same contact topology as the affinity
matrix A corresponding to the high-resolution (single-residue-
per-node) model. Here A is derived from the negative of the
Kirchhoff matrix Γ, with the diagonal elements set to zero.

For the purpose of demonstration, we build a five-level
coarse-grain hierarchy on the protein influenza virus (PDB:
2HMG) having 1509 residues. The structure of the fine-scale
affinity matrix A is shown in figure 4(a). Recursive application

of the hierarchical algorithm gives rise to coarse-scale affinity
matrices shown in figures 4(b)–(f ). The affinity matrices,
which are otherwise real valued, are shown here as dot plots.
Note the similarity in the structure of the affinity matrix across
the hierarchy. This suggests that the dynamics at the fine scale
can be related to the dynamics at the coarse scale.

Indeed, the fluctuation dynamics are derived from the
topology. In particular, diagonalizing the Kirchhoff matrix
gives the modes of vibration (equation (10)). But the Kirchhoff
matrix at the fine scale can be very large and its eigen
decomposition can be expensive even if we are interested
in only in a subset of modes. But given the hierarchical
representation, using the coarse-scale affinity matrix Ã we
can build a corresponding Kirchhoff matrix Γ̃ which is
much smaller in size compared to Γ at each level of the
hierarchy. Furthermore, by performing eigen decomposition
of the Kirchhoff matrix at the coarsest level of hierarchy
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and propagating information to the fine scale, we achieve
a hierarchical GNM. More details will be presented in a
forthcoming paper.

In figure 5(a), we compare the eigen spectrum λ

obtained from propagating information from level 4 of the
hierarchy (red line) with the spectrum λΓ obtained by a direct
eigen decomposition of the fine-scale Kirchhoff matrix Γ
(circles). There is an excellent agreement in the leading
(slow) eigenvalues. For a quantitative comparison between
the eigenvectors, we plot in figure 5(b) the following measure:
 − diag(|UTUΓ|), where U is the matrix of eigenvectors
obtained by the multi-scale approximation, UΓ is the matrix
obtained from a direct eigen decomposition of the fine-scale
Kirchhoff matrix Γ and  is a vector of all ones. The
relative error plot demonstrates a close match, except for the
last few eigenvectors, which suggests that the information
propagation over the hierarchy has not clearly separated
them from other directions. However, the contribution of
these modes to the overall fluctuation dynamics is relatively
small, as the contribution of each mode scales with its
inverse eigenvalue. To demonstrate the effect of coarse
graining on fluctuation dynamics, we compare the mean-
square fluctuations obtained from different levels of the
hierarchy with those derived before coarse graining. As
shown in figure 5(c), a correlation coefficient value of 0.87 is
achieved in the mean-square fluctuation values after mapping
the structure of 1509 residues into a representative network of
20 nodes. Thus, the fluctuation behavior of individual residues
is accurately maintained despite a significant reduction in the
complexity of the examined network.

6. Conclusion

In this paper, we presented recent applications of the GNM
to a series of enzymes as well as large structures such as
the HK97 bacteriophage viral capsids. Understanding the
dynamics of large protein structures can be computationally
challenging and to this end, we presented a new approach
for building a hierarchical, reduced rank representation of the
protein topology and consequently the fluctuation dynamics.
The new methodology permits the network representation in
terms of models that are lower in complexity, without any
distinguishable change in the frequency distribution and shape
of the dominant modes. The reduction in complexity with
minimal loss in accuracy illustrated here for the influenza virus

supports the utility of the new methodology for exploring the
dynamics of supramolecular assemblies.
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