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and analyze the data in a similar way in  order  examine 
the relationship between the respective relaxation time 
distributions. Such studies have been initiated. 

Measurements of the relaxation t ime distributions as 
a function of solvent qual i ty  show that the relative ampli- 
tudes of the slow modes decrease with increasing solvent 
qua l i ty  and thus increasing t h e r m o d y n a m i c  interac- 
tions, but they remain observable even for  good sol- 
vents. 
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ABSTRACT: Effects of chain connectivity, viscous resistance of the environment, and internal barriers to 
conformational transitions are studied in relation to  local orientational motions in flexible chains. Calcu- 
lations are performed according to the dynamic rotational isomeric states scheme. Only a single transition 
over a bond a t  a time is assumed. That  such single bond rotations are indeed possible in a sequence of 20 
bonds without significant distortion of the tails is shown by the present analysis. The increase in the fric- 
tional resistance to  motion with the size of the mobile sequence is investigated for polyethylene at 300 K. 
The latter, referred to  as the size effect, is included in the treatment through consideration of the total 
path traveled by each of the moving atoms. Orientational autocorrelation functions for a bond a t  the end 
of an N bond mobile sequence are evaluated in the presence and absence of the size effect. Two different 
correlation times, emphasizing short and long time motions, are defined. Dependence of the correlation 
times on the length of the mobile sequence is evaluated. 

Introduction 
Long- and short-wavelength motions in  a single poly- 

mer chain are controlled b y  three major  factors: (i) the 
external resistance to motion exerted by  the environmen- 
ta l  frictional forces; (ii) the internal  resistance associ- 
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ated with barriers to conformational transitions; (iii) the 
chain connectivity. 

The first two factors are common to both small  mole- 
cules and macromolecules. The third is an inherent  prop- 
er ty  of macromolecules uniquely and distinguishes them 
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from small molecules. Chain connectivity operates on 
both local and larger scales. On a local scale, intramo- 
lecular elastic forces operating on every skeletal atom 
impose restrictions on the types of orientational motions. 
On a larger scale, a given sequence of bonds in motion 
also experiences intramolecular forces a t  both ends as 
commonly represented by the bead-and-spring model. 
Those forces are stronger for more extended configura- 
tions in which the longer molecular dimensions are com- 
patible with a smaller number of available transitions. 

The effect of the first factor, the external resistance, 
is twofold. First, a frictional resistance operates all along 
the moving segment. A second effect is closely associ- 
ated with chain connectivity and operates at the ends of 
the sequence in motion. Helfand classifies the types of 
local motions into three groups.' The first leaves the 
tails of the mobile group unchanged. Such crankshaft- 
like motions2 require simultaneous rotations of two skel- 
etal bonds and hence are opposed by stronger internal 
effects. A more probable class of motions is referred to 
as type 2 motions.' These motions are characterized by 
the fact that they lead only to translation of the tails. 
The third type of motion necessitates large swinging of 
the tails and is the least probable from an energetic point 
of view, as expected. 

As to the internal barriers to motion, they originate 
from short-range intramolecular interaction and depend 
on the specific chemical and stereochemical structure and 
on the particular isomeric transition. de Gennes points 
out3 that, in contrast to external effects, which increase 
with the size of the moving segment, the strength of inter- 
nal resistance diminishes as a longer sequence of bonds 
is allowed to undergo orientational motion, as first dis- 
cussed by K ~ h n . ~  This feature leads to the conclusion 
that for large N ,  where N is the number of bonds in a 
sequence in motion, the internal resistance is negligibly 
small compared to that of the en~i ronment .~  

Long-wavelength motions are satisfactorily described 
on the basis of the diffusion equation of the Rouse- 
Zimm modeL5 Alternately, local jump stochastic mod- 
els, where a master equation governs the time evolution 
of conformational transitions, have been used to treat 
chain  dynamic^.^" In this latter approach, the slower 
normal modes of relaxation are shown to exhibit the Rouse 
chain behavior, while the high-frequency part of the spec- 
trum is explicity influenced by local chain structure.' I t  
is worth noting that the jump stochastic models have two 
shortcomings: first, the out-of-lattice effects are not 
included, and second, the external resistance to motion 
is considered only implicitly, through the transition prob- 
abilities. 

The Brownian dynamics simulation technique is another 
useful tool for a clearer understanding of the mecha- 
nisms and rates of local conformational motions in poly- 
mers. In this approach the above mentioned two short- 
comings are avoided. In an early Brownian motion study, 
Fixmang explored the effect of barrier heights and chain 
lengths on the rates of relaxational modes and on the 
decay with time of bond dihedral angle autocorrelations. 
Except for the longest wavelength modes, significant depar- 
ture from Rouse-like rates is observed, the latter being 
stronger, for higher barriers to bond rotations. Also, the 
dependence of the rates on the number N of bonds in 
the moving segment is foundg to be weaker than that of 
the Rouse model in which the rates scale with 1/P. In 
the limit as N - a, a finite relaxational rate character- 
istic of single-bond torsional motion  remain^.^ The lat- 
ter is in reasonable agreement with the predictions of 
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the Kramers theory." That the local motions are acti- 
vated by energies of about one barrier height between 
rotational isomeric minima and the applicability of the 
Kramers rate expression for rotameric transitions are also 
confirmed by the Brownian dynamics simulations by Hel- 
fand and collaborators."-14 More precisely, their work 
reveals that correlated or cooperative motions of type 2 
where a bond rotation is immediately followed by a coun- 
terrotation of a second neighbor occur quite frequently. 
About 30% of conformational transitions belong to that 
group. However, the majority of conformational transi- 
tions occur by isolated single-bond rotations of the form 

Brownian dynamics simulations have the advantage of 
analyzing motions of relatively long chains. However, in 
the reported studies, a limited subset of conformational 
transitions has been considered only. On a local scale 
on the other hand, a model faithful to structural and con- 
formational details of the real chain, incorporating the 
whole set of conformational transitions, is provided by 
the dynamic extension of the rotational isomeric state 
(DRIS) m0de1.l~ The latter is however limited to a rather 
short sequence. 

The DRIS model originates from an early work by 
Jernigan." The same approach was later used by Beevers 
and Williams in the analysis of dielectric relaxation 
data." The stochastics of conformational transitions were 
recently analyzed in a series of  paper^.'^'''-^^ Calcula- 
tions elucidate several aspects of local chain dynamics 
such as the experimentally observed22 activation ener- 
gies of about one barrier height in dilute 
the contribution of a family of internal orientational modes 
to relaxation leading to an OACF (orientational autocor- 
relation function) decay significantly different from a sin- 
gle exponential," and the anisotropic nature of motions 
on the local scale.lg The approach allows for a realistic 
estimation of the role of internal effects on local relax- 
ational behavior provided that the external effect is elim- 
inated by adopting a mean frictional resistance, regard- 
less of the size of the reorienting unit. Calculations along 
this line c ~ n f i r m ' ~ * ~ ~ * ~ ~  the occurrence of an increase in 
"chain stiffness" accompanying the decrease in the size 
of the mobile group. In fact, longer sequences are found 
to relax faster, confirming the decrease in internal vis- 
cosity as N increases, in parallel with K u h n ' ~ ~ ? ~  predic- 
tions. This behavior is a t t r i b ~ t e d ' ~  to the increase in 
the number of degrees of freedom and hence in the num- 
ber of allowable paths to relaxation in longer sequences. 
Recently, quantitative agreement with the spin-lattice 
relaxation times and correlation times from NMR exper- 
iments with polyethylene oxide in dilute solution was made 
possible by confining the DRIS analysis to a representa- 
tive short segment of four bonds.21 

The previous applications of the DRIS model have been 
confined to the consideration of internal effects associ- 
ated with the barriers to conformational changes. How- 
ever, chain dynamics is affected by other factors. For 
instance, the work of Skolnick and HelfandZ3 shows that 
transitions in which the separation of the reorienting units 
from the axis of rotation is relatively small are easily accom- 
modated by compensating fluctuations of the various 
degrees of freedom of the chain. Such distortions, among 
which the bond torsional angles are the softest, mini- 
mize the motion of the tails. They do not require high 
energy provided that they are spread over a large dis- 
tance along the chain. This mechanism suggests that the 
resistance imposed by the tails on a mobile sequence is 
not strong enough to have a major influence on confor- 
mational stochastics. 

t e gf. 
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range themselves to some extent, for example, by slight 
distortion of bond angles, bond lengths, and torsional 
angles, as in the treatment by Helfand and collabora- 
tors. 

(d) The bond li  will be both displaced and oriented 
during the rotational transition, as required for accom- 
modating the transition over S without appreciably mov- 
ing the tails. This type of compensating motion under- 
gone by the transforming bond itself is implicitly present 
in the Brownian dynamics simulation by Helfand. The 
orientation of mj obtained in this manner will be the result- 
ant of an internal motion associated with the isomeric 
transition of the rotating bond li  and the accompanying 
compensating motion. The extent of orientation of mj 
resulting from the internal motion depends on the num- 
ber and states of the bonds between li and mi. 

(e) The motion induced by single-bond isomeric rota- 
tion depends on the configurational state of S .  Inas- 
much as a large number of different configurations of 
bonds in S will correspond to a given internal motion, 
the reorientation and displacement of li  accompanying 
its torsion will be more or less random, Le., independent 
of the given internal motion. Moreover the reorienta- 
tion of li will be isotropic. Also, as the compensating 
motion is spread over a large length S, the change in the 
direction of li  will be small. The calculations below will 
show that, in fact, a large number of configurational tran- 
sitions are compatible with the requirement of preserv- 
ing the tails of the sequence in motion approximately 
fixed, provided that the number of bonds in S is about 
20 or higher. 

(f) The bond li  undergoing the transition may be either 
to the left or to the right of mi. Both locations are equiv- 
alent. In our model we assume that li  is to the left of 
m.. For the evaluation of the internal dynamics of mj 
reiative to li, the left-hand side of li  is conventionally 
held fixed while the right-hand side rigidly follows the 
rotational motion. However, this approach overesti- 
mates the reorientation and displacement of mi since the 
left-hand side need not be fixed and a given rotation of 
li will be evenly distributed at  both sides of li. Atten- 
tion will be paid to this feature in analyzing the numer- 
ical results. 

L 
B 

Figure 1. Contour S of the chain between points A and B. A 
rotameric transition in the ith bond changes the conformation 
of the contour from the solid line to the dashed line. The vec- 
tor for the ith bond is shown as li(0) at time 0 and as li(t) at t .  
m,(O) and mj( t )  denote the label mi, affixed to the jth bond at 
time t = 0 and t ,  respectively. 

On the other hand, in previous studies using the DRIS 
model, the external effect arising from the frictional resis- 
tance of the environment was accounted for by a Stokes' 
type expression for the effective viscosity. Although an 
average effective solvent friction coefficient may be adopted 
for a given length of mobile segment, the relative contri- 
bution of various size segments to relaxation can not be 
understood unless a proper frictional resistance as a func- 
tion of the volume swept during transition is incorpo- 
rated into the treatment. In the present paper, we com- 
plement the previous DRIS formalism by including the 
effect of external resistance to motion. This effect is 
treated by considering the lengths of the paths traveled 
by the moving atoms during conformational transitions, 
within the Kramers-type rate expression" of the theory, 
similar to but in more detail than the work of 
mas him^.^^ In addition to the treatment of internal ori- 
entational autocorrelations by DRIS, the influence of out- 
of-lattice compensating motions is independently explored. 

The Model and Assumptions 
On the basis of the work by Helfand and collabora- 

t o r ~ , ~ * ~ ~ - ~ ~ , ~ ~  where single bond rotations followed by com- 
pensating rearrangements of the neighboring units are 
predominantly responsible for local motions, the follow- 
ing model is proposed. 

Figure 1 shows contour S between point A and B in a 
flexible chain, which undergoes an instantaneous jump 
from the configuration shown by the solid line to the one 
shown by the dashed line. We are interested in the ori- 
entation of a probe m .  located at the j th  bond, within 
the mobile segment. $e assume the following: 

(a) The mobile segment belongs to an infinitely long 
chain (no end effects affect the motion). 

(b) A single rotational transition takes place at  a given 
time. In the figure, the transition takes place at  the bond 
li. Its isomeric state (trans, gauche+, ga~che-)''~ is changed. 
This transition affects the orientation and the position 
of the label mj. 

(c) The transition affects only a finite contour length 
S along the path on two sides of li. The size of S may 
differ depending on the configurational transition. The 
requirement is that it should contain m.. The parts of 
the chain outside of S are referred to as the tails. A tran- 
sition may take place without rearrangements of the tails 
(i.e., displacement or reorientation) if the bonds in S rear- 

Theory 

A schematic representation of the orientational motion, 
according to the model delineated above, is shown in Fig- 
ure 2. In agreement with assumption b, a single rotation 
over bond li is responsible for the motion. The latter is 
also displaced and reoriented with respect to a laborato- 
ry-fixed frame X Y Z ,  following assumption d. lj is assumed 
to coincide with the [-axis of a bond-based coordinate 
system E?{, which moves with li. The axes of the mole- 
cule-fixed coordinate system are denoted by [(O)s(O){(O) 
at t = 0 and k ( t )q ( t ) r ( t )  at t. mi is the vector whose ori- 
entational motion is investigated. I t  is rigidly affixed to 
the j th  bond, as indicated by the subscript j. The sub- 
script j will be omitted in the following for brevity. 

The vector m may be represented in the laboratory- 
fixed and the molecule-fixed coordinate systems at times 
zero and t as follows: 

m(O) = / . d 0 ) c a ( O )  = mi(O)ei 
m(t) = cc,(t)t,(t) = mi(t)ei (1) 

Here ei denote the base vectors along the coordinates 
XYZ.  c,(O) and c,(t) are the base vectors along the coor- 
dinates f ( O ) ~ ( o ) l ' ( O )  and .$( t )v( t ) { ( t ) ,  respectively. pa and 
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the overall segment as a second fundamental dissipative 
process in parallel to local conformational flips. 

The internal OACF has been the subject of a series of 
studies in which the direction and location of the rotat- 
ing bond were kept fixed in space. The incorporation of 
compensating dynamics into them is achieved simply by 
multiplying with an average cosine of the reorientation 
of the rotating bond. (T, ,( t))  is expected to decay as a 
single exponential. Indeed, it reflects the effect of the 
out-of-lattice fluctuations on the orientational motion, 
for which a single-exponential decay has been previ- 
ously proposed.26 

Internal Motions. DRIS Approach. The stochas- 
tics of conformational transitions is fully described by 
the transition probability matrix C whose ZJth element 
CIj  represents the time-dependent probability of transi- 
tion from the initial configuration ($ IJ to the final one 
[ $ I p  Here capital indices Z and J are employed for the 
configurations, to distinguish them from the bond indi- 
ces i, j, etc. Clearly, each configuration characterized by 
the set of N isomeric states associated with the back- 
bone bonds C obeys the master equation15 

dC/dt = AC (6) 
where A is the matrix of the rate  constant^.'^@-^^ Its 
element A,, with I # J, represents the rate constant for 
the passage from the J t h  configuration to the Zth one. If 
those configurations possess more than one bond, differ- 
ing in state, A, equates to zero, following assumption b 
of single bond rotation a t  a time stated above. Other- 
wise A, is given by 

1A0exp(-Ei/RTJ for Z # J 

Y 

Figure 2. Displacement and rotation of label mj on an iso- 
meric transition in bond j .  The bond vector li(0) changes into 
li(t) in order to accommodate the transition without apprecia- 
bly moving the tails. .$(O)s(O){(O) and ( ( t )s( t ){( t )  are the coor- 
dinate systems affixed to bond li at time 0 and t ,  respectively. 
X Y Z  denotes the laboratory-fixed reference frame. R(0) and 
R(t) represent the position vector of li at t = 0 and t .  The 
dashed curves are portions of the sequence leading to the tails. 

mi denote the components of the vector m relative to 
molecule-fixed and laboratory-fixed systems, respec- 
tively. Summation is assumed over repeated indices. The 
orientational autocorrelation function (OACF), a&), for 
m as observed from the laboratory-fixed coordinate sys- 
tem is defined as 

@&) = (m(O).m(t)) 
= (pL,(0)~Cls(t ) ta(O).~~(t )  ) 

= (M&)Ta&t))  (2) 
where the brackets denote the ensemble average over all 
configurations accessible to the segment. The second line 
follows from eq 1, and the elements of the matrices Map 
and Taa are 

M a b ( t )  = pa(O)p,&t) T a b ( t )  = ~ a ( O ) * $ t )  (3) 
The components Mas are obtained as the product of the 
components of m relative to the molecule-fixed refer- 
ence frame. Taro represents the transformation matrix 
from the system E ( O ) v ( O ) [ ( O )  to ((t)v(t)f(t) and hence 
reflects the effect of the compensating motions on the 
OACF. By use of assumption e, of the independence of 
internal and compensating motions, eq 2 is written as 

(4) 
For small rotations, the off-diagonal terms of ( Taa(t))  
will be small compared to the diagonal elements. Also 
following the assumption of isotropic compensating motion, 
the three diagonal elements of (Tap( t ) )  will be approxi- 
mately equal to each other. Denoting the latter by 
T,,(t), eq 4 reduces to 

@.,At) = (Ma&) ) (T,&)) 

@e&) = (T, ,( t))  (M,,(t)  + M,,(t) + M&)) 
E (T,,(t) )@.i,t(t) ( 5 )  

Here the second line follows from the definition of the 
OACF, where aint(t) represents the OACF of m(t) as 
observed from the molecule-fixed coordinate system. 
Equation 5 is of fundamental importance. I t  shows that, 
under the assumptions clearly set forth above, the ori- 
entational autocorrelation function for vector m may be 
expressed as the product of an internal and external OACF. 
This was in fact suggested several years ago by Stock- 
mayer et  a1.' who introduced the rotational diffusion of 

1 - x ~ ~ ~  for z = J 
K # J  

(7) 

Here R is the gas constant and T i s  the absolute temper- 
ature. The activation energy Ei is determined from the 
height of the energy barrier surmounted by the single 
rotating bond i during its isomeric transition. Two-di- 
mensional energy surfaces based on the pairwise depen- 
dence of consecutive torsional angles have been used in 
previous work to estimate Ei.15*1s-P1 The latter is an inher- 
ent characteristic of the polymer chain in question regard- 
less of its state (i.e., in bulk or in solution). I t  will always 
contribute to the apparent activation energy. 

The front factor in eq 7 is taken as 

j= i t l  

where y and y* refer to the curvature of the energy path 
a t  the minimum and maximum, respectively, assuming 
the prevailing potential to be of the form U = (1/2)y($ 
- $,in)2 a t  the minimum and U = (1/2)y*($ - $mm)2 at 
the maximum. $ is the torsional angle of the rotating 
bond; $min and are the values at  the isomeric min- 
imum and a t  the top of barrier, respectively. f is the 
friction coefficient. As shown in Figure 3, sij represents 
the separation of the j t h  atom from the axis of rotation, 
which is defined by the rotating bond i. It  is assumed 
that bond i connects the atoms i - 1 and i, following usual 
convention. Its transition sets in motion the neighbor- 
ing N atoms with indices i + 1 < j < N .  Inasmuch as 
conformational transitions from one isomeric state to 
another involve about 120° bond rotations, the path trav- 
eled by the moving atom is approximately equal to sij. 
Thus the term CKi+,si? in eq 8 is representative of the 
total squared distance swept by the ensemble of those 
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Figure 3. Displacement of the jth atom due to a rotation over 
the ith bond, sij is the distance from the axis of rotation to the 
jth atom. A4i represents the rotation about li. 

atoms accompanying the isomeric transition of bond i. 
The introduction of the term Csi: in the denomina- 

tor of the front factor A, accounts for the frictional resis- 
tance exerted by the environment to the reorientation of 
the sequence. The latter leads to a considerable slowing 
down of the motion as N increases. This effect will be 
referred to as the size effect and calculations will be per- 
formed for the two cases: (i) using eq 8 coupled with eq 
7, i.e., assigning a distinct rate to each transition depend- 
ing on the path traveled by the mobile atoms; (ii) ignor- 
ing the size effect and adopting a mean value sz instead 
of Csit for all rates regardless of the number of bonds 
in motion. The latter approach was adopted in previous 
~ tudies '~ ' l ' -~~  and reflects the influence of the internal 
resistance only. Repeating the calculations for the two 
cases (see sequel) will explicitly give information on the 
influence of the external resistance on local motions. 

For a bond vector subject to the rotational motion of 
the N preceding bonds the correlation time is calculated 
from2, 

with 

i n  

where A, is the j th  eigenvalue of A, Pno is the equilib- 
rium probability of the initial configuration (&, mi is 
the vectorial representation of the bond of interest when 
the sequence assumes the configuration (@Ii at time t ,  and 
Bij and B .n-' are elements of B and its inverse B-', which 
are found from the similarity transformation A = BAB-l, 
A being the diagonal matrix of the eigenvalues. ki rep- 
resents the a priori probability of relaxation through inter- 
nal mode j with frequency X j .  k ,  corresponds to the zero 
eigenvalue A,. 

Equation 9 directly follows from the definitionz7 

T = Jm(@(t) - @(m)) / (@(O)  - @(a)) dt (11) 

for the correlation time, in which the OACF +(t)  given 
by2, 

+(t)  = exp(Ajt) (12) 
l 

is substituted. In general k .  assumes different forms 
depending on the investigated correlations. The expres- 
sion given by eq 10 is for the second OACF. 

7 

6.44 
I 

Figure 4. Number of configuration corresponding to a given 
value of si> Intervals of 2 A are chosen for sij  in obtaining the 
ordinate values. 

Equation 9 represents nothing other than the weighted 
average of the relaxation times associated with each indi- 
vidual mode. As a consequence the slowest modes dom- 
inate the resulting correlation time. On the other hand, 
if short time intervals are of interest, the definition 

T = -(1- k , ) / C k j A j  (13) 
j 

may be preferred over eq 9. T given by eq 13 represents 
the intersection of the initial tangent to the OACF decay 
curve with the @(t)  = k, asymptote. According to eq 13, 
the various relaxational frequencies IAj l  contribute addi- 
tively to yield a correlation time shorter than the one 
implied by eq 9. Both definitions (eqs 9 and 13) will be 
considered and discussed in the following quantitative 
analysis of correlation times. 

Calculations 
Long-Range Effect of Connectivity. To estimate 

the strength of the constraint imposed by the tails on 
local motions, we consider a portion of a hypothetical, 
perfect tetrahedral chain with three equally probable states 
(t, g+, g-) available to each bond. A change in configu- 
ration is made by rotating the central bond li by a tor- 
sional angle of A 4  = f120'. This rotation is propagated 
along both sides of the mobile bond, as mentioned in the 
model. For a quantitative evaluation of the displace- 
ment of the tails accompanying the rotation, let us con- 
sider a segment of about 20 bonds with bond li in the 
middle. For simplicity let us assume first that the left- 
hand side is fixed and the rotation moves the right-hand 
side of li only. Let us examine the displacement of the 
11th atom j from atom i. The displacement undergone 
by atom j will depend on the isomeric states of the nine 
intermediate bonds between atoms i + 1 and j - 1. Atom 
j will be displaced along a 120' arc on the circle with 
radius sij (see Figure 3). The distribution of sij is shown 
in Figure 4. The latter is found from the complete enu- 
meration of the 3' configurations. The quoted numbers 
in the ordinate refer to the number of configurations cor- 
responding to sij intervals of 2 A. The dashed curve is 
drawn to guide the eye. Bond lengths are taken as 1.53 
A. 

Let us assume that the 11th atom from the mobile bond 
undergoes a displacement less than 4 8. From the dis- 
tribution above, the subset of chains satisfyings this 
requirement amounts to 41 ?& of the total ensemble. Con- 
sidering that the left-hand side of li will also be moving, 
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Figure 5. Variation of correlation times 7 with the number of 
bonds in the mobile unit: (a) from eq 9; (b) from eq 13. In both 
parts, the lower curves are obtained without the size effect and 
the upper curves with the size effect. 

this displacement will be spread over the 22 bonds, effec- 
tively leading to a displacement of 2 8, for each end. Such 
a displacement is sufficiently small to be easily accom- 
modated by the compensating motions mentioned above. 
Thus, the restriction of confinement of the tails within 
a small volume is not as severe as conceived. If an addi- 
tional constraint, that of the change in the orientation 
of the last b o d  (here lj-J, is considered, then the num- 
ber of allowable transitions is further reduced. For exam- 
ple, let us assume that in the segment of 21 bonds, the 
orientation of the two terminal bonds chan es each by 

tions, (2138)2 transitions are computed to succeed in meet- 
ing the two above spatial and directional requirements. 
Thus the central bond li may undergo any of the six iso- 
meric transitions between the state t, g+, and g- if the 
neighboring bonds undergo one of those (2138)2 transi- 
tions. 

Let CY denote the angular displacement of the end-to- 
end vector li + d in Figure 3, during the conformational 
transition. Calculations holding the left-hand side of li 
fixed yield ( cos2 a) = 0.435, for the final subset of allow- 
able transitions. Inasmuch as the change in orientation 
is distributed over both sides of lj, an average angular 
displacement of about 24" is estimated for the segment 
of 20 bonds. Such an angular motion may easily be accom- 
modated by about 2" angular distortions (torsional or 
bending) of the bonds flanking lj. Moreover the suit- 
able translation of bond li  may further help to minimize 
the constraints imposed by the tails. Thus, the analysis 
above clearly demonstrates that long-range connectivity 
is of secondary importance in dictating the stochastics 
of local conformational transitions. 

Dependence of Orientational Correlation Times 
on Size Effect. Calculations are performed for differ- 
ent sizes of mobile sequences in polyethylene chain at 
300 K. The same parameters as those employed 
previ~usly'~ are adopted. The resulting correlation times 
associated with the orientational motion of a vector m 
are shown in Figure 5 as a function of N. The investi- 
gated vector m is affixed along the Nth bond of a sequence 
whose first bond in kept fixed in space. Thus, compen- 
sating motions of the mobile sequence are not included 
in the calculations. The obtained correlation times are 
representative of the internal dynamics only. 

The curves in Figure 5a are obtained by using eq 9. 
The upper and lower curves correspond to dynamics in 
the presence and absence of a size effect, respectively. 
The equivalent curves following from the definition of 7 

less than 15". Then among the total of 3l I configura- 

0 4 !  

c' 
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Figure 6. Frequency distribution of internal relaxational modes 
in a sequence of four mobile bonds in PE at 300 K. The solid 
and dashed curves are obtained without and with the size effect, 
respectively. 

given by eq 13 are shown in Figure 5b. I t  should be recalled 
that the former definition is representative of motions 
observed in a large time window while the latter is appli- 
cable to experiments probing relative high frequency 
motions. In fact, the correlation times predicted by eq 
13 in Figure 5b are lower than those resulting from eq 9 
in Figure 5a. In both figures the lower curves are found 
by adopting a mean value s2 = l 2  sin2 B where 1 = 1.53 8, 
and 0 = 68", instead of Cisi: of eq 8, regardless of the 
number of moving atoms and their respective displace- 
ments. Inasmuch as the front factor is kept constant, 
the variation of 7 with N indicates the contribution to 
relaxation from internal barriers uniquely and shows the 
internal stiffening caused by a decrease in N. It  is worth 
noting that in this case T is proportional to 1/N at larger 
values of N .  However, this internal stiffening is more 
than counter balanced by the size effect, with increasing 
N ,  as may be observed from the upper curves in Figure 
5a,b. In this case, a minimum is observed for N = 3 (Fig- 
ure 5a) and N = 4 (Figure 5b), depending on the defini- 
tion of 7. It is interesting to note that a similar mini- 
mum was found at  short wavelengths by Allegra28 in his 
analysis of Langevin dynamics including friction effects 
on each atom. 

Figure 6 shows the frequency distribution of internal 
relaxational modes over the range lo8 < 1x1 < 10" s-l, in 
a sequence of four mobile bonds in PE at  300 K. The 
solid and dashed curves are obtained without and with 
the size effect, respectively. The ordinate W, is found 
by summing the kj values corresponding to the eigenval- 
ues lying in intervals of A log (-A) = 0.25. I t  is interest- 
ing to note that the frequency distribution is not signif- 
icantly perturbed by including the size effect. The main 
result of the latter is a common shifting of the frequen- 
cies to lower values, although a small new peak also appears 
a t  lower frequencies. The friction coefficient { is held 
constant in the calculations and does not contribute to 
the shift of the spectrum shown in Figure 6. Thus the 
shift in the spectrum is characteristic of the number of 
bonds in the mobile sequence. 

Discussion 
In this paper, we have complemented the previous work 

based on the DRIS approach by considering two impor- 
tant aspects of local chain dynamics: the chain connec- 
tivity and the size effect. 

In relation to the effect of chain connectivity, the present 
calculations indicate that for a sufficiently long sequence 
(-20 bonds) a large number (-4 x lo6) of conforma- 
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tional transitions induced by single-bond rotations are 
possible without appreciably moving the ends of the mobile 
sequence. Furthermore, the constraints imposed by chain 
connectivity may be reduced by spreading the resulting 
rotational and translational displacements over the neigh- 
boring units as considered by Helfand and co-workers. 
From Brownian dynamics simulations, Fixman also con- 
cludes that the so-called chain effect arising from the 
connected neighboring units does not have a significant 
effect on local dynamics, although in his approach, in 
contrast to Helfand, the cooperative compensating effects 
are not considered. 

The size effect refers to the increase in the frictional 
resistance to motion with the number of moving atoms 
and the length of their displacements. Calculations where 
a mean viscous resistance was adopted regardless of the 
size of the orienting unit reflect the contribution of inter- 
nal barriers to local motion. They lead to correlation 
times proportional to 1/N, in qualitative agreement with 
the so-called internal viscosity effect, pointed out by 
Kuhn.4 When the size effect is considered, it is shown 
that the N dependence of 7 is inverted above N = 3 or 4. 
The implications of the above analysis a t  large N would 
be of interest in comparison to previous work. Fixman’s 
Langevin dynamics simulations demonstrate that the relax- 
ation rates converge to a finite value a t  large N. Also, 
the analytical treatment of conformational kinetics by 
Skolnick and Helfand and the Brownian motion simula- 
tions by Helfand and collaborators show that the motion 
of a central bond becomes insensitive to the length of 
the tails beyond a certain value of N. The asymptotic 
value to which 7 converges as N - 03, according to the 
present work, depends on the definition (eq 9 or 13) 
adopted for 1. 

The ex ression for 7 according to eq 9 consists of the 
sum of 3 - 1 terms. Each term varies inversely with an 
eigenvalue, Xi. Slowing down of the motions by intro- 
ducing the expression Cisi? in the denominator of the 
front factor is directly reflected on each X j .  Conse- 
quently, a set of hj’s will necessarily vanish as N increases 
indefinitely. This leads to an infinite T according to eq 
9. 

Equation 13 on the other hand associates 7 with the 
incipient rate of relaxation. In this case, the set of X.’s 
going to zero with increasing N will not contribute to the 
correlation time and 7 will converge to a finite value, at 
large N. This behavior following from the definition of 
T as the inverse of the incipient rate of relaxation is in 
conformity with the simulations carried out by Fixman. 
It  is worth noting that the ambiguity in defining the cor- 
relation time arises from the presence of a distribution 
of modes. Indeed for systems with a single mode, the 
two definitions of T given above by eqs 9 and 13 are equiv- 
alent. 

Macromolecules, Vol. 23, No, 4, 1990 

Acknowledgment. This work was supported by NATO 
Grant 0321187 and by the French Ministere de la Recher- 
che et de la Technologie. 

References and Notes 
Helfand, E. J .  Chem. Phys. 1971,54,4651. 
Boyer, R. F. Rubber Chem. Technol. 1963,34,1303. Schatzki, 
T. F. J. Polym. Sci. 1962, 57, 496; Polymer Prepr. (Am. 
Chem. SOC., Diu. Polym. Chem.) 1965. Valeur, B.; Jarry, J.- 
P.; GBny, F.; Monnerie, L. J. Polym. Sci., Polym. Phys. Ed. 
1975, 13, 667. 
de Gennes, P.-G. Scaling Concepts in Polymer Physics; Cor- 
ne11 University Press: Ithaca, NY, 1979. 
Kuhn, W.; Kuhn, H. Helu. Chim. Acta 1945, 28, 1533; 1946, 
29, 7, 609, 830. 
Rouse, P. E. J .  Chem. Phys. 1953,21. Zimm, B. H. J .  Chem. 
Phys. 1956, 24, 269. 
Orwoll, R. A.; Stockmayer, W. H. In Stochastic Processes in  
Chemical Physics; Schuler, K. E., Ed.; Adv. Chem. Phys. 
1969, 15, 305. 
Valeur, B.; Jarry, J. P.; GBny, F.; Monnerie, L. J. Polym. Sci., 
Polym. Ed. 1975, 13,667. 
Stockmayer, W. H.; Gobush, W.; Chikahisa, Y.; Carpenter, D. 
K. Faraday Discuss. 1970,49, 182. 
Fixman, M. J .  Chem. Phys. 1978,69, 1527, 1538. 
Kramers, H. A. Physica 1940, 7,284. 
Helfand, E. Science 1984, 226,647. 
Helfand, E. J. Chem. Phys. 1978,69, 1010. 
Helfand, E.; Wasserman, Z. R.; Weber, T. A. Macromolecules 
1980, 13, 526. 
Helfand. E.: Wasserman. Z. R.: Weber. T. A. J .  Chen. Phvs. 
1979, 70; 2016. 
Bahar. I.: Erman. B. Macromolecules 1987220. 1368. 
Jernigan,’ R. L. In Dielectric Properties of Pobmers; Karasz, 
F. E., Ed.; Plenum: New York, 1972; p 99. 
Beevers, M. S.; Williams, G. Ado. Mol. Relax. Proc. 1975, 7, 
237. 
Bahar, I.; Erman, B. Macromolecules 1987, 20, 2310. 
Bahar, I.; Erman, B. J. Chem. Phys. 1988,88, 1228. 
Bahar, I.; Erman, B.; Monnerie, L. Macromolecules 1989,22, 
431. 
Bahar, I.; Erman, B.; Monnerie, L. Polym. Commun. 1988. Bahar, 
I.; Erman, B.; Monnerie, L. Macromolecules 1989,22, 2396. 
Baysal, B.; Lowry, B. A,; Yu, H.; Stockmayer, W. H. In 
Dielectric Properties of Polymers; Karasz, F. E., Ed.; Ple- 
num: New York, 1972. Jones, A. A.; Matsuo, K.; Kuhlmann, 
K. F.; GBny, F.; Stockmayer, W. H. Polym. Prepr. 1975, 16, 
578. Morawetz, H. Science 1979, 203, 405. Chen, D. T.-L.; 
Morawetz, H. Macromolecules 1976, 9, 463. 
Skolnick, J.; Helfand, E. J. Chem. Phys. 1980,72, 5489. Hel- 
fand, E.; Skolnick, J. J. Chem. Phys. 1982, 77, 5714. 
Mashimo, S. Macromolecules 1976, 9, 91. Mashimo, S. J. 
Polym. Sci., Polym. Phys. Ed. 1981, 19, 213. 
Flory, P. J. Statistical Mechanics of Chain Molecules; Inter- 
science: New York, 1969. 
Dubois-Violette, E.; GBny, F.; Monnerie, L.; Parodi, 0. J .  
Chim. Phys. 1969,66, 1865. 
Berne, B. J.; Pecora, R. Dynamic Light Scattering with Appli- 
cations to Chemistry, Biology and Physics; Wiley Inter- 
science: New York, 1976. 
Allegra, G. J. Chem. Phys. 1974,6I, 4910; 1978,68, 3600. 
Kloczkowski, A.; Mark, J. E.; Bahar, I.; Erman, B., unpub- 
lished results. 

Registry No. Polyethylene, 9002-88-4. 


