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ABSTRACT A matrix formulation of the time-dependent transition partition function is combined with 
a generator matrix formalism to permit rapid and accurate calculation of the first and second orientation 
autocorrelation functions, (m(O).m(r)) and ( (3/2)(m(O).m(~))~ - 1 / 2 ) ,  for a chain molecule. Here m is a 
unit vector rigidly attached to a bond in the chain, and 0 and T denote this vector at times 0 and T.  The 
time-dependent a priori probabilities of the type p * ( x ; x ~ ) ,  which denotes the probability that a bond i in 
state x at time 0 is still in state x at time T ,  reduce correctly to  those obtained from conventional equilib- 
rium rotational isomeric state theory at zero and infinite times. 
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I. Introduction 
Recently a matrix multiplication method has been pro- 

posed to describe the stochastics of conformational tran- 
sitions between isomeric states in polymer chains.' The 
chain is idealized as a microcanonical system where the 
relaxational motions are assumed to be determined by 
short-range intramolecular conformational potentials exclu- 
sively. This approach is somewhat equivalent to the clas- 
sical treatment of the equilibrium statistics of an ideal 
chain, in the absence of excluded volume and/or specific 
solvent effects.2 

In analogy with the conventional treatment of chain 
statistics where discrete rotational isomeric states are 
assigned statistical weights on the basis of the nearest- 
neighbor interactions along the chain,2 stochastic weights 
can be defined' to determine the probabilistic occur- 
rence of transitions among those states. Suitable organ- 
ization of the stochastic weights in a matrix formalism 
and serial multiplication following the usual methods of 
statistical mechanics yield the so-called transition par- 
t i t ion  function governing the stochastics of conforma- 
tional transitions at a given time. 

The approach developed by Bahar' permits the eval- 
uation of the joint probability of occurrence of any two 
configurations with a given time interval. Thus, the the- 
ory is readily applicable to the analysis of specific con- 
formational transitions. In the present work the formu- 
lation is extended to include the evaluation of a dynamic 
quantity of interest from the experimental point of view, 
the orientational autocorrelation function (OACF) asso- 
ciated with a vectorial quantity in the chain. 

In the following section, a brief recapitulation of the 
dynamic rotational isomeric states (DRIS) 
which is the fundamental model underlying the present 
work, will be given, with emphasis on its application to 
the determination of OACFs. The new analytical method 
for the calculation of the OACF will be introduced in 
section 111. It is followed by illustrative calculations and 
discussion in the last two sections. 

11. The DRIS Model and Its Application to 
Calculation of the OACF 

A. Time-Delayed Joint Probabilities. In the DRIS 
model, the type of conformational transitions accessible 

to interdependent pairs of bonds and the corresponding 
activation energies are estimated from short-range intramo- 
lecular energetic considerations. Conformational energy 
maps constructed as a function of two consecutive bond 
rotations are consulted for that purpose. Kramer's high 
friction limit rate expressions are used for the associated 
rate constants, with the front factor being left as an adjust- 
able parameter inversely proportional to the effective vis- 
cosity. The rate constant associated with the passage 
from the jth state to the ith state constitutes the ijth ele- 
ment of the transition rate matrix A(2)  governing the con- 
formational kinetics of interdependent pairs of bonds. 
The diagonal elements of A @ )  are determined from the 
microscopic reversibility requirement that the elements 
in each column should sum up to zero. 

Let p(aP;a"P") denote the joint probability of occur- 
rence of two configurations ab and a0Po, with a time inter- 
val T, for a pair of interdependent bonds. This quantity 
may conveniently be viewed as the ijth element of the 
symmetric time-delayed joint probability matrix P(T) ,  pro- 
vided that the set of states ab and a0Po are identified as 
the ith and jth configuration of the pair. Thus for a chain 
with three isomeric states trans (t), gauche+ (g+), and 
gauche- (g-) available to each bond, P(T)  is a 9 X 9 ma- 
trix consisting of the elements p(tt;tt),  p(tt;tg+), ..., 
p(g-g-;g-g-) in reading order. In the more general case 
where there are p rotational isomers a t  each bond, the 
dimensions of P ( T )  are p 2  X p 2 .  P(T)  is readily evalu- 
ated from the transition rate matrix A @ )  by using the 
equation3s4 

where A is the diagonal matrix of the eigenvalues XI, Xp, 
..., Xg of A(2), B and its inverse 3-l are the matrices of 
the eigenvectors and eigenrows following the transforma- 
tion 

and diag (P(0)) is the diagonal matrix of the elements 
p"(tt), p"(tg+), ..., p"(g-g-) of the probability vector P(0) 
of the initial occupancies of the various states. 
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An equation similar to eq 1 may equally well be writ- 
ten for independent bonds, by using the 3 x 3 transition 
rate matrix A") valid for single bond independent dynam- 
ics. Clearly, P(T) reduces in this case to a 3 X 3 matrix 
with the elements denoted as p(t;t),p(t;g+), ..., p(g-;g-). 

B. Orientational Autocorrelation Functions. Let 
us consider a unit vectorial quantity m rigidly affixed to 
a chain. Following the Brownian motion of that chain, 
the orientation of m in space will change with time. A 
measure of the rate of reorientation is the OACF associ- 
ated with m. The first and second OACFs are defined 
as 

M,(T) = (m(O).m(T)) (3) 

(4) 
respectively. Here the angular brackets refer to the ensem- 
ble average over all conformational transitions at  time T. 
Clearly, m(0) and m(r)  depend on the sets of isomeric 
states {a"P"r "...) and laPr ...) characterizing, respec- 
tively, the initial and final configurations of the chain. 
If the functions in brackets in eqs 3 and 4 are shown as 
fi(a8r ...; a"P"y "... ), with i = 1 and 2, the OACF may be 
found from 

and 

M&T) = ( (3/2)(m(O).m(~))~ - 1 / 2 )  

p(aPr...;a"P"y"...) (5) 
where p(aPr ...; a"@"y "...) is the joint probability of occur- 
rence of the configurations {a"P"y "...) and {&) with a 
time interval T. The summations in eq 5 are performed 
over all the initial and final states of the rotatable bonds 
in the chain. 

Two different approaches have been undertaken to com- 
pute M ~ ( T )  in previous work. In both approaches, com- 
plete enumeration technique has been employed. They 
differ in the procedure to evaluate the joint probability 
p(a& ...; a"P"y "...). They may be outlined as follows: 

(a) Bahar and Erman proposed4 an expression of the 
form 

p (aPy6.. .;aopo y O S 0  .. * = 

~ ~ a P ; ~ " P " ~ s ~ P r ; P " r " ~ q ~ r ~ ; y " ~ " ~ . . .  (6) 
where 

Y Yo 

This expression is reminiscent of the doublet closure6 that 
is used for the analysis of the equilibrium state of the 
linear Ising model. Here, joint events of occupancies of 
pairs of states with a time interval T are treated. 

(b) By suitable combination of the transition rate matri- 
ces A(2)  for pairs of bonds, in direct product formalism, 
an expression was derived by Bahar, Er an, and Mon- 
nerie5 for the transition rate matrix A'NYgoverning the 
conformational kinetics of N pairwise interdependent 
mobile bonds. Similarity transformation of the latter and 
substitution of the resulting matrices in eq 1 yield the 
joint probability matrix of size 3N X 3N for N mobile 
bonds. This procedure requires the diagonalization of a 
matrix of order 3N and consequently is limited to smaller 
N ( N  5 5) compared to approach a, whereas the method 
in approach a may be extended to longer sequences of 
bonds a t  the expense of computation time only. On 
the other hand, approach b has the advantage of yield- 
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Figure 1. First orientational autocorrelation function at 300 
K for bond i in a polyethylene chain of 20 bonds. 

ing the 3N eigenvalues that are representative of the fre- 
quencies of the 3 N  - 1 modes contributing to relaxation 
(one of them being equal to zero). Thus, in this case, 
the decay of the OACF with time is conveniently writ- 
ten as 

where the time-independent amplitude factors K i  are found 
for the specific type of correlation function f i  by using 
B, B-', A, and P(Oh5 

Calculations performed for mobile segments in poly- 
ethylene (PE) using either method a or b yield almost 
indistinguishable decay curves for the OACFs, confirm- 
ing the equivalence of the two approaches. However, both 
of them differ from the limitations of the complete enu- 
meration technique, and satisfactory comparison of the 
DRIS formalism with Brownian dynamics simulations and 
experimental and theoretical works on the  high- 
frequency  motion^^,'!^ cells for a more rigorous analyti- 
cal method for calculating the OACFs. The latter is pre- 
sented in the next section. 

111. Matrix Multiplication Scheme To Compute 
OACFs 

According to the recently developed treatment of con- 
formational stochastics in a chain of N bonds, a transi- 
tion partition function Z(T) is defined for a given time 
by' 

N-l 

where V~(T)  is the stochastic weight matrix correspond- 
ing to the pair of bonds i - 1 and i, J = col (1, 1, .,., l), 
and JT = row (1, 1, ..., 1). For a chain with three iso- 
meric states t, g+, and g- accessible to each bond, the 
stochastic weight matrices read 

p(t;t) j (10) 
p(t;gf) 

P(t;g-) 
... 

P(g-;g-) 

v2(T) = 

and Vi for 2 < i 5 N - 1 is composed of 9 block elements, 
each corresponding to a fixed state at  time T, according 
to 
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Vi(7) = (11) 

i 

where 

It should be recalled that p(cr@;yS) and p ( a ; y )  refer to 
the time-delayed joint probabilities for pairwise-depen- 
dent and -independent bonds, respectively. 

The above matrices may conveniently be employed to 
determine the a priori probabilities of specific isomeric 
transitions at  a given time.' In fact 

u(aP;r@ p ( a B ; y @ / p ( a ; y )  (12) 

i-1 N- 1 

yields the a priori probability of occurrence of states t 
and g+ with a time interval 7 for the jth bond along the 
chain. Here, V;*(7) is the stochastic weight matrix where 
all elements u;(aP;yG) with 6 # t and 6 # g+ are equated 
to zero. Similar expressions may be written for differ- 
ent conformational states and/or larger numbers of con- 
secutive bonds. 

Let us now consider the first OACF associated with a 
vector m affixed to a polymer at  a fixed location. A ref- 
erence frame of observation may be chosen as the one 
whose x axis coincides with the first bond of the chain, 
the y axis makes an acute angle with the prolongation of 
a hypothetical preceding bond in the trans state, and the 
z axis completes a right-handed coordinate system. This 
defines the convenient bond-based frame2 associated with 
bond 1. The investigated vector m will be assumed to 
be rigidly embedded in the bond-based frame of bond i + 1. Let mo be its representation in that local frame. 
Then the first OACF may be written as 

M1(7) = ((T(o)mo).(T(~)mo)) (14) 

= mo ( TT( 0)T ( 7 )  ) mo (15) 
where T is the transformation matrix that operates between 
bond-based frames i + 1 and 1. It  is given by the serial 
product T'TZT3...Ti of the conventional transformation 
matrices2 between two consecutive frames. The time argu- 
ment follows from the dependence of the individual Tis, 
1 < j I i, on the instantaneous torsional angles. The 
definition of the reference frame for observation requires 
that TI be time independent; i.e., 41 is defined to have 
the value for a t state. The superscript T denotes the 
transpose of the matrix. The ensemble average in brack- 
ets in eq 15 may be rewritten as 

q=1 q=1 

Thus, the problem of finding the OACF reduces to the 
evaluation of the average quantity on the right-hand side 
of eq 16. For this purpose, we recall that for any three 

conformable matrices A, B, and C, a relationship of the 
form 

(ABC),, = (A 8 CT)(BIco, (17) 
may be written. Here, ( jc0l denotes the column array of 
the elements of the matrix enclosed therein, the ele- 
ments being arranged in usual reading order, and 8 sig- 
nifies the direct matrix product. This identity was 
employed by Jernigan and Florys in the RIS treatment 
of the optical anisotropy of chain molecules. Likewise, 
it may be demonstrated that 

(ABC),,, = (BIrow(AT 8 C) (18) 
where ( JyOw is the transpose of ( Jc0l. Identification of A 
with [II'=lT (O)] and C with [II6=,Tq(i)] and substitu- 
tion of tke i8entity matrix E3 of order 3 for B yields 

q=l 

Equation 20 follows from eq 19 upon an appeal to the 
theorem on direct products.'0 The product in eq 20 is 
similar to the one encountered1'J2 in the treatment of 
the fourth moment of the end-to-end vector r in poly- 
mer chains. The major difference is that here the two 
transformation matrices correspond to different times. 

In order to write the expression in the form of eq 15, 
it is necessary to reexpress the row of nine elements in 
eq 20 as a 3 X 3 matrix. This objective is obtained by 
performing the following operation. 

(21) 

(22) 

F =row ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,  1) (23) 
In analogy to the matrix multiplication scheme of equi- 

librium statistics, the average in eq 20 may be found from 

( n [ T q ( 0 )  8 Tq(7)I) = 

M1(7) = moT(E3 8 F)(DT 8 EJm" 

D = (E3lrow(fi[Tq(0) 8 Tq(7)1) 
q=l 

I 

q=1 

[z(7)1-'[(JT 8 E,)[(V 8 Eg)IITq(0) 8 Tq(7)ll1f-') X 

(V 8 Eg)/f;i-*)(J 8 E,)] (24) 
where E9 is the identity matrix of order 9. The notation 
( )?) signifies the serial product of j factors of the quan- 
tity so designated, the initial factor possessing serial index 
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i .  11 11 is an operator denoting the diagonal supermatrix 
such that 
IIT,(O) 0 T&~)ll = 

1 
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T, 0 T,. 
... 

Tt, Tg+, and T, are the transformation matrices where 
the torsional angles for the trans, gauche+, and gauche- 
states are inserted, respectively. The product of the super- 
matrices of order 81 for bonds 1 through N - i - 1 in eq 
25 is reduced to a matrix of order 9 in eq 24 by premul- 
tiplication by (JT 8 Eg) and postmultiplication by (J 8 
EB). The resulting average 9 X 9 matrix is transformed 
into a row of 9 elements in eq 20, and inserted into eq 
15, as the identity in eq 16 implies. In this final matrix 
(v(o)T(7)),  the diagonal elements refer to the first OACF 
for the vectors along the x ,  y, and z axes of the bond- 
based frame i + 1, while the off-diagonal terms repre- 
sent the orientational cross correlations between the three 
axial vectors. 

An approach similar to the one described above for 
the first OACF may be used to derive an analytical expres- 
sion for the second OACF as well. The relevant average 
quantity in the latter is ( ( I I I ( O ) . ~ ( ~ ) ) ~ ) ,  which may be 
written as2J2 
((1n(O)*m(7))~) = 

( [moTTT(0)T(~)mo] 8 [moTTT(0)T(~)mo] ) (26) 
= ((moT Q moT)(TT(0) 8 TT(0))(T(7) 8 T(7)) X 

(mo 0 m")) (27) 
Recognizing the moT and mo are constant, using the iden- 
tity AT 8 AT = (A 8 A)T, and substituting S ( T )  for (T(T) 
8 T(T)), we may write eq 27 as 

((1n(o)*m(7))~) = (moT o moT)(sT(0)~(7))(mo 8 mO) 

(28) 
It  is noted that eq 28 is similar in form to eq 15. The 
calculation of the average quantity in eq 28 may be per- 
formed, therefore, by following exactly the same proce- 
dure as outlined in detail above. I t  suffices to replace 
each T, either a t  t = 0 or 7 by T, 8 T, in eqs 20 and 24. 
The elements of the diagonal supermatrix are accord- 
ingly rearranged such that, for instance, the second block 
element on the diagonal becomes (Tt 8 Tt) 0 (Tg 8 T,+). 
IV. Calculations 

To test the validity of the analytical solution given by 
eqs 18-25, coupled with eqs 15 and 16, the decay of the 
first OACF with time was calculated for various bonds i 
along a 20-bond PE chain. The same data as in the pre- 
vious calculations are used4 with the exception of E, = 
0.6 kcal/mol for the energy of the g* state in excess of 
the t state. Inasmuch as the frame of observation moves 
with bond 1 as mentioned above, the OACF reflects the 
internal motions of the chain only. Curves for i = 5,10, 
and 15 at  7' = 300 K are shown in Figure 1. The fact 
that a faster decay occurs with larger i arises from the 
higher degrees of freedom of the latter. Those results 
are valid for a medium where the same effective fric- 
tional resistance applies on each bond. 

Similarly, the decrease in orientational correlations as 
the number of bonds between the frame of observation 
and the investigated bond increases is illustrated in Fig- 
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Figure 2. First orientational autocorrelation function at 300 
K for bond i in a polyethylene chain of 20 bonds at times of (a) 
0.05, (b) 0.1, and (c) 0.5 ns. 
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Figure 3. Joint probabilities for trans states at internal bonds 
in a polyethylene chain of 20 bonds at 300 K according to (a) 
the exact dynamic rotational isomeric state treatment of the 
present work, (b) the approach described as method a in sec- 
tion 11, and (c) treating the bonds as being independent. 

ure 2. Curves a, b, and c, calculated for three distinct 
time intervals, show that the even-odd effect that is char- 
acteristic of the dynamics of short segmentssJ3 disap- 
pears as the size of the mobile segment increases. 

I t  is noted that the curves in Figures 1 and 2 and sim- 
ilar calculations on OACFs reproduce very closely the 
results previously obtained for shorter ~egments,~J3 using 
either method a or b outlined in section 11. The impor- 
tant aspect of the present calculations, however, is that 
now the calculation procedure, Le., the analytical method, 
is incomparably faster than the previous complete enu- 
meration technique. Besides, the extension to longer chains 
is easily carried out. 

The OACFs, in a way, result from the superposition of 
several motions and are not very sensitive to the individ- 
ual bond probabilities. A more thorough examination of 
the conformational stochastics of the bonds shows that 
if, in turn, the transitions of specific isomeric states are 
considered, the decay curves resulting from method a in 
section I1 differ from those predicted by the present matrix 
multiplication scheme. Figure 3 illustrates the decrease 
of p*(t;t) with time for an internal bond in a 20-bond PE 
chain a t  300 K. The upper curve is the a priori joint 
probability obtained from an expression of the form of 
eq 13. The middle curve results from method a in sec- 
tion 11. The lowest curve corresponds to independent 
bonds. It is observed that the upper curve is the one 
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Figure 4. A priori joint probabilities pi*(t;t) in polyethylene 
chains at 0.5 ns and 300 K as a function of bond location i and 
chain length N .  
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Figure 5. A priori joint probabilities pi*(t;g+) in polyethylene 
chains at 0.5 ns and 300 K as a function of bond location i and 
chan length N .  

that agrees in the two limits of 7 = 0 and m, with the 
conventional equilibrium probabilities of the RIS model. 
Furthermore, a t  7 = 0, the lower curve is equal to 1/(1 
+ 2a), which is smaller than the content of trans place- 
ments when g+g- and g-g+ bond pairs are suppressed, as 
they are in the top curve. 

The matrix multiplication scheme may be further used 
to evaluate, as in Figures 4 and 5, the instantaneous a 
priori joint probabilities as a function of chain length 
and bond location. The horizontal axis is plotted as N - 
i - 1 in order to facilitate comparison with the equilib- 
rium probabilities calculated by Jernigan and F l ~ r y . ~ J ~  
The curves correspond to 7 = 0.5 ns. The joint proba- 
bilities exhibit an even-odd dependence on bond loca- 
tion, reminiscent of the predictions of the RIS model of 
chain statistics. In fact, Figure 4, for instance, repre- 
sents the probability that a bond initially ir, the trans 
state will have its state unchanged a t  a later time 7. Thus, 
this probability is a measure of the residence time in the 
t state. I t  is interesting to note that this property exactly 
parallels the equilibrium probability of occurrence of the 
trans state,*J4 as may be checked from the comparison 
of Figure 4 with the p(t) vs N - i - 1 curves obtained by 

the RIS formalism. This close similarity is not by coin- 
cidence, however. I t  reflects the well-known time ensem- 
ble equivalence of average conformational properties. I t  
simply means that if a state has low equilibrium proba- 
bility of occurrence, the period of time a given bond stays 
in that state is short, or vice versa. I t  should be noted 
that the approach of section I1 would invariably yield 
constant probabilities, i.e., horizontal lines, regardless of 
the bond serial order. 
V. Conclusion and Discussion 

The mathematical formalism of the present work pre- 
sents a concise and systematic method of computing 
dynamic properties averaged over all conformational tran- 
sitions of the chain. Similarly, pertinent analyses of events 
associated with specific conformational changes, such as 
helix-coil transition or cyclization phenomenon, may be 
performed with the aid of the present formulation. Clearly, 
direct quantitative correlation with experiments would 
require the proper incorporation of intermolecular, and 
intrachain but long-range, effects into the treatment. This 
may be achieved through suitable rescaling of the ele- 
ments of the stochastic weight matrices, though the matrix 
multiplication scheme developed in section I11 preserves 
its validity. 

An interesting aspect of the present formulation is to 
demonstrate, on a quantitative basis, the one-to-one cor- 
respondence between the static and dynamic probabili- 
ties of occupancies of various states. The even-odd depen- 
dence of the a priori transition probabilities on bond serial 
order along the chain is in exact conformity with the well- 
known end effects of equilibrium statistics. 

I t  is always possible to improve the theory through con- 
sideration of higher order closure approximation com- 
pared to the doublet closure presently adopted. The above 
formulation may be easily adapted to the triplet closures 
approximation. In this case, the doublet and singlet joint 
probabilities in eq 12 are replaced by triplet and doublet 
joint probabilities, respectively. This better approxima- 
tion may be worth undertaking if accurate knowledge of 
solvent-mediated conformational energetics of groups of 
three consecutive bonds is available. Such an approach 
may be particularly useful inasmuch as correlations 
between second neighbors (i.e., bonds i and i + 2, for 
example) are asserted15 to be important in local confor- 
mational dynamics. 
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