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ABSTRACT A mathematical formulation is developed for the study of the kinematics or geometry of motion 
of polymer chains with freely rotating bonds. The chains are assumed to be in a dense continuous medium 
constraining the spatial displacements of atoms. The basic postulate of the proposed model is that, following 
any perturbation of an equilibrium configuration, the atoms rearrange cooperatively in space so as to minimize 
their overall square displacements. This postulate is equivalent to minimizing the energy spent against the 
surroundings during the motion of the chain from one configuration to another. The present formulation 
allows for the calculation of the changes in all of the degrees of freedom of the chain, internal and external, 
in response to a change in the dihedral angle of an internal bond. By the use of Lagrange multipliers, the 
formulation may be generalized to study the results of perturbations on a chain subject to other types of 
external constraints, such as uniaxial deformation. 

Introduction 
Local dynamics of a polymer chain above the glass 

transition temperature results from high-frequency tor- 
sional fluctuations about the main-chain bonds.'-3 These 
torsional motions, imparted from the random fluctuations 
of the environment, are highly localized, taking place by 
moving only a few neighboring bonds along the chain. The 
evidence for such strong localization comes from kinetic 
studies:*6 Brownian dynamics and exper- 
iments.*11 The Constraints imposed by chain connectivity 
play a major role in controlling the kinematics of local 
motions. The localization mechanism is particularly 
important in a restrictive environment where the energy 
cost of moving a chain against environmental friction is 
relatively high. A relevant parameter controlling the 
motion of a chain is the sum of squares of displacements 
of chain atoms.s Indeed, in the case of the freely rotating 
chain presently adopted, neglecting inertial effects, min- 
imization of the sum of square displacements is equivalent 
to the minimization of the energy spent against the 
surroundings during the motion of the chain from one 
configuration to another. 

The specific aim of the present paper is to develop an 
efficient formalism for calculating the optimal confor- 
mational changes of a given chain, in response to a small 
perturbation of a dihedral angle. Once this is achieved, 
one may numerically integrate over several successive small 
steps and determine the geometry of motion of the chain 
over finite rotations of a bond, such as those involved in 
rotameric transitions among trans and gauche states. 
Reeults of such calculations for a freely rotating chain are 
reported in the following paper. 

In a preliminary study,'2 the perturbation was effec- 
tuated in the form of a translation of one end of the chain, 
while the other was held fixed in space. Accordingly, the 
cooperative rearrangements of bond dihedral angles so as 
to accommodate the deformed end-to-end separation of 
the chain were investigated. Minimum displacement of 
position vectors relative to the center of gravity was 
assumed to occur during conformational rearrangements 
of the chain. This picture is reminiscent of a network 

chain deforming affinely under uniaxial tension, in a 
restrictive medium. In the present formulation, the 
changes in atomic positions accompanying a rotameric 
transition of an internal bond are studied. Energy 
minimization is the fundamental criterion for the choice 
of a certain unique path of conformational relaxation 
following the given perturbation. 

Model and Assumptions 
We consider a perfect tetrahedral structure of n back- 

bone bonds, each of length 1. Bond lengths and bond angles 
are fixed. The dihedral or torsional angle cpi of bond i is 
assumed to take any value, in analogy to the freely rotating 
chain. The chain is allowed to translate or rotate in space, 
and coordinates of chain atoms relative to a laboratory- 
fixed reference frame OXYZare observed. Thus, the total 
number of degrees of freedom of the chain amounts to n + 4, n - 2 of them arising from the rotations of the internal 
backbone bonds 2 I i I n - 1 and the remaining 6 associated 
with the absolute position and orientation of the chain. 

The internal motions of the chain may be mathemat- 
ically described in terms of bond-based coordinate systems. 
The system, Oxlylzl, affixed to the first bond, for example, 
is shown in Figure 1. Following the notation by Flory,13 
the x-axis of the ith bond-based coordinate system is chosen 
in the direction of the ith bond, and the y-axis is in the 
plane of the ith and the ( i  - 1)st bonds and makes an acute 
angle with the extension of the (i - 1)st bond. The z-axis 
completes a right-handed frame. Chain atoms are indexed 
from 0 to n. rj denotes the position vector of the ith atom 
along the chain relative to the local frame Oxlylzl. It will 
be referred to as the internal position vector in the 
following. The absolute position of atom i in space, on the 
other hand, is indicated by the vector R, connecting the 
origin of the frame OXY2 to the ith atom. 

The absolute location of the chain in space is specified 
by the position vector Ra = (XO YO &IT of the zeroth atom 
in the frame OXYZ. Here the superscript T denotes the 
transpose. Three Euler angles shown in Figure 2 define 
the absolute orientation of the chain in space: the angle 
@ that the first bond makes with the Y-axis, the angle + 
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Figure I. An instantaneous configuration of a chain. OXYZ is 
the laboratory-fixed coordinate system. Bonds are numbered 
from 1 to n. Atom numbers are shown in parentheses. The 
internal motions of the chain are described in terms of bond- 
based coordinate systems affixed to each bond. The ith hond- 
based coordinate system  oxy,^, is chosen with the x, axis in the 
direction of the ith bond. The yraxis is in the plane of the ith 
and the (i- 1)st hondsandmakesan acute angle with theextension 
ofthe(i-1)sthond. Onlythefirsthond-basedcoordinatesystem 
is shown in the figure. 0 represents the supplemental bond angle. 
Ra represents the position of the zeroth atom with respect to the 
laboratowfixed coordinate system. R, and r2 are the position 
vectors of the ith atom in the respective frames OXYZ and 
OXLYlZl. 

FigureZ. Orientationofthe first bond-hasedcoordinatesystem 
relative to the laboratory-fixed coordinate system. * and J. are 
respectively the polar and azimuthal angles of XI in the system 
OXYZ. x = e is the rotation of the coordinate system Ox,ylzl 
about the xl-axis. 

thattheprojectionofthefirstbondontheXZplanemakes 
with the Z-axis, and the angle x of rotation of the first 
bond about ita own axis. 

According to the basic postulate adopted in the present 
study, in a restrictive medium which is regarded as a 
continuum, the conformational rearrangements of the 
backbone atoms succeeding an external perturbation are 
constrainedtooccur inaconcertedfashionsoastopreserve 
aa much as possible the instantaneous position vectors R;. 
Physically, this postulate is a natural consequence of the 
energy minimization principle since, in the absence of 
energetic or enthalpic interactions, the energy change 
reduces to the work done by the system, which increases 
with the displacement of the atoms from their equilibrium 
positions. Assuming the chain to equilibrate prior to any 
conformational transition, the distortion of a given con- 
fmation is aasumed to be opposed by harmonic potentials 
(or springlike resistance), forcing the atomsto restore their 
original locations. Mathematically, this requirement is 
satisfied by minimizing the scalar function S of the 
incremental changes 6Ri in position vectors 

The function S physically represents the mean-square 
displacement ofatomssucceedinga perturhationofagiven 
original configuration. For purposes of numerical com- 
putation in the following, 6Ri will be replaced hy Mi, 
which refers to small changes in Ri. 

In their multidimensional extension of Kramem' reaction 
rate theory? Skolnick and Helfand point out that the 
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steepest descent path of the reaction coordinate associated 
with conformational transitions is a compromise between 
long-range and extremely shorbrange motions. Accord- 
ingly, the former is controlled hy the cumulative square 
displacements of chain atoms whereas intramolecular 
conformational energetics determines the latter. Inas- 
much as the present model chain is a freely rotating one, 
intramolecular energetics do not contribute to the kinetica 
of configurational transitions, and the above-defined S 
function, which is identical to eq 4.3 in ref 5, is the only 
remaining rate determining factor. 

Constraints on valence angles and bond lengths are 
exactly satisfied in the freely rotating chain model 
presently considered. Model chains of this type are also 
referred toas "rigidchains", in contrastto'flexiblechains" 
in which bond angles and valence angles are not fixed but 
controlled by harmonic potentials. Comparison of the 
equilibrium and dynamic properties of the two model 
chains indicates" that differences arising due to the 
presence of rigid constraints may be eliminated by adopting 
a compensating potential, originally introduced by Fix- 
man,15 based on the metric determinant of the uncon- 
strained coordinates in the rigid model. 

Mathematical Formulation 

General Approach. The mathematical formulation 
comprises two major steps: First, a computationally 
convenient expression is obtained for AR; as a linear 
combination of the incremental changes in the n + 1 
variables controlling the configurational changes of the 
chain. The n - 2 internal degrees of freedom associated 
with bond torsional flexibilities are represented by the 
dihedral angles qj, 2 5 j 5 n - 1. The external degrees of 
freedom are associated with the translation (XO, YO, 20) 
of the first atom and rotation (4 $, x )  of the first bond. 
Hence, these six coordinates define the absolute location 
and orientation of agiven chain configuration. As a second 
step, under the imposition of an external perturbation, 
which suppresses one or more degrees of freedom of the 
chain, the S function-which is composed of the additive 
contribution of the square displacements (AR;)* of all 
atoms-will be minimized with respect to all of the 
remaining free variables. 

Changes in Internal Position Vectors. The internal 
position vectors r;, for 1 5 i 5 n, are written as 

ri = (E + TI +TIT, + T,T2T, + ... + T,T,...T ,,)e (2) 
where e is the bond vector ( 1  0 O)T and E is the identity 
matrix of order 3. The transformation matrix T; for 
expressing vectorial or tensorial quantities of the bond- 
based frame Oi+lx;+1y;+lz;+l in their representation in 
frame Oixiyiz; reads 

1 sin 0 0 
Ti = sinBcosq; -cosBcos qi sin pi (3) rose sin B sin pi -cos B sin pi -cos vi 

where B is the supplement of the fixed tetrahedral bond 
angle. The torsional angle q; = OD leading to the planar 
geometry of the three bonds i - 1, i, and i + 1 defines the 
trans (t) state. i120" rotations with respect to the trans 
state are referred to as the gauche* (g*) states.13 In the 
interest of simplifying the presentation, we include a 
fictitious zeroth bond by the aid of which it becomes 
possible to define the torsional state of the first bond. 
Thus, the set of dihedral angles is enlarged to include the 
rotation of the first bond; Le., qj varies in the range 1 5 
j 5 n - 1 and the external rotation x is identified with a. 



Macromoleculee, Vol. 26, No. 23, 1992 

Inasmuch as we are primarily interested in the change 
in bond torsional angles, in response to a rotameric jump 
of an internal bond, it is expedient to express first the 
incremental change in the position vedor A& as a function 
of the change in dihedral angles Aqj, 1 I j I n - 1. Using 
the partial derivatives of ri with respect to the bond 
torsional angles, the incremental changes Pri for small 
Avj, j < i ,  may be written as a linear combination of Aqj 
as 

h i  AT,(E + T2 + T2T3 + ... + T2Tp..Ti-1)CAv1 + 
T,AT2(E + T, + T3T4 ... + T3T ,... Ti-,)CAq2 + 

T,T,$T,(E + T, + T4T5 + ... + 
T4T ,... Ti-,)CAq3 + ... + T1T2T ,... Ti-,$Ti-,CAqi-, (4) 

Here i varies in the range 2 I i I n, and the partial 
derivative XI'jjdqj has been replaced as 
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the translation & of the first atom, which have not been 
considered so far. Thus, &i represents the incremental 
change in the position vectors ri, corresponding to the 
intermediate chain configuration with A@ = A$ = Oo and 
A& = 0. The passage to the set of position vectors R, is 
through 

(12) 
Here the transformation matrices T($) and T(@) are 
respectively 

T($) = 0 0 ] (13) 

R, = T($)T(@)ri + R,, 

sin$ 0 -cos$ 

[cos$ sin+ 

[O 0 1 

and 

sin @ -cos @ 
T(@) = cos@ sin@ :] (14) 

From eq 12, AR, is readily written as 

ARi = T($)T(@)Ari + T($)T'(@)r,A@ + 
T'($)W@)r,A$ + A€+, (15) 

for small incremental changes in ri, 3, and $. Here the 
primes indicate the derivatives with respect to the 
arguments. By inserting eq 6 into eq 15, we obtain the 
following expression for ARi in terms of the n + 4 variables 
(Acpi, 1 I i I n - 1, A$, A@, and A&) of the problem: 

AR, = T($)T(@) [zH(j,i)aijAvjl + T($)CT(@)riA$ + 
1-1 
T($)T(@)Br,A@ + ARo i = 1, n (16) 

Here T'(@) and T'($) have been replaced by T(@)B and 
T($)C, respectively, and the matrices B and C are 

0 1 0  0 0 1  i ]  (17) 

n-1 

BE[-: : :] C = [ - i  

It is noted that eq 4 is exact in the limit of differential 
changes in position vectors and dihedral angles. The 
integrated form in terms of gradients of position vectors 
and dihedral angles presented in eq 4 is applicable to the 
case of small changes in those variables only. Thus, a 
change in dihedral angle of about 120°, which occurs during 
transitions from one rotational isomeric state to another 
in real chains, will be approximated by a succession of 
small-amplitude steps (<3O) in the required direction. It 
is noted that a constant torsional velocity path for the 
rotameric transition of a given bond does not necessarily 
yield minimum energy dissipation upon integration. 
However, the approach is rigorously exact in the limit of 
infinitesimally small step size. 

hri may be written in compact notation as a linear 
combination of Avj, 1 I j I i - 1, as 

i-1 . _  

Ar, = caijAqj 
1-1 

n-1 .. - 
EH(j,i)a,Aq, 
1-1 

(7) 

where H(j,i) is defined as 

H(j,i) = 1 j <  i 

= O  j l i  (8) 
and, for each i in the range 2 I i I n, aij is a 3 X 1 vector 
given by 

Here, To is defined as the identity matrix of order 3, and 
Gj is the generator matrix given by 

O,=[P '1 1 

It ie noted that a computationally efficient expression for 
the intermediate position vector ri is 

ri = [E 01 [ P G h ]  [ :] 
-1 

(11) 

Changes in Absolute Position Vectors. Arj differs 
from ARi by the rotations A@ and At) of the first bond and 

This substitution will prove useful in the evaluation of the 
square displacement of position vectors (A&)2, which will 
be summed up to form the S function, following eq 1. A 
concise expression for (ARi)'obtained after a few algebraic 
manipulations is 

T 

X 

1 ... ... 
Dri*Dri ... ::: I 
Bri-Dri Bri-Bri ... 

where square matrix on the right-hand side is symmetric 
and the matrix D is defined as 

D = T(@)TCT(@) (19) 
Minimization of the Cumulative Square Displace- 

ments. The minimization of the cumulative square 
displacements Ci(ARJ2 with respect to differential changes 
in various degrees of freedom is performed by equating 
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the partial derivatives of S with respect to (i) Aqm, where 
1 5 m I n - 1, (ii) A$ and A@, and (iii) a to zero. 

We first consider derivatives with respect to changes in 
dihedral angles, which using eq 18 may be written as 

Using the expression 

which follows from eq 7, and the definition 

eq 20 reduces to 

n 

This equality is representative of a set of n - 1 equations, 
comprising the derivatives with respect to each Aqm, 1 5 
m I n - 1. If a given rotation Aqs is imposed on a particular 
bond s, eq 23 becomes for each m 

+ pmA$ + w,A@ + vm-AR0 = -umAqS 

(24) 
j # s  

Here the substitutions 

pm = eH(m,i)(aim.Dri) (25) 
i=2 
n 

w, = zH(m,i)(aim-Bri) 
1=2 

and 
n 

v, T($YI”I’@)EH(m,i)a,, (27) 
t=2 

are used for conciseness. 

The differentiation of S with respect to the changes in 
the external orientational degrees of freedom A$ and A@ 
leads to the following expressions: 

n n 

and 

1 as n-l n 
--- - Z w m A q m  + X(Bri*Bri)A@ + 
2dA@ i=O 

g(Dri-Bri)A$ + [T($)T(@)cBril-aR, = 0 (29) 
1=0 t=O 

Finally, the derivatives of S with respect to the com- 
ponents A X o ,  AYo, and AZO of the translation vector a 
yield three equalities which, in compact notation, read 

[T($)T(P)kBrilA@ + (n + l)AI$, = 0 (30) 

In analogy to eq 24, eqs 28-30 may be readily written 
r=O 

in nonhomogeneous form for a fixed change Aq8, as 
n-1 n n 

CpmAqm + Z(Dri-Dri)A$ + z(Dri-Bri)A@ + 
m a 1  r=O t=O 
m#s 

n 

[TU)T(@)~Dril-ARo = -P~A+J~  (31) 
P O  

n-1 n n 

X w m A q m  + X(Bri-Bri)A@ + z(Dri-Bri)A$ + 
m = l  i=O r=O 
m #s 

n 

[T($)T(@)~Bril*ARo = -wsAqs (32) 
i=O 

and 
n-1 n 

[T($)T(@)tBrilA@ + (n + 1 1 4  = -vsAcos (33) 

respectively. The set of (n + 3) equations represented by 
eq 24 and eqs 31-33 are conveniently organized in matrix 
notation as 

r=O 

Here Q1 is the symmetric matrix of order n - 2 

Q15 

... . . . . . .  ... . . . . . .  
. . . . . .  ... ...... 4 - 1 . n - 1  L&-l,l un-1,2 ..* _I 

(35) 
Q2 is defined as 

W1 

... 
Qz ws-1 V e l  (36) 

... ... 
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and Q4 is the 5 X 5 symmetric matrix 

6 4  I 
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resistance only, which is proportional to S given by eq 1. 
In the high-friction regime, eq 43 sets the velocity of each 
atom to the total force on that atom divided by the friction 
coefficient. A constrained equation of motion emerges 
from eq 43 if the minimized S is used in U. Inasmuch as 
the f i i  state rather than the time evolution was of interest 
in the present work, the resulting constrained equation 
has not been elaborated upon, but only the optimal state 
succeeding an imposed rotameric transition has been 
determined. 

The set of equations 34-41 corresponds to the case of 
conformational rearrangements accompanying a well- 
defined rotation Acp8 imposed on bond s. However, the 
mathematical formaLism presented above is readily adapt- 
able to the process of conformational transitions subject 
to other types of restraining or modulating external effecta 
as well. For the case of incremental translations of chain 
ends, which may be implemented upon uniaxial defor- 
mation of network chains, for example, the constraint of 
fixed displacement of the chain ends is compiled by the 
introduction of three Lagrange multipliers, A,, A,, and A,, 
for the terminal atom. The ascribed displacement of the 
zeroth atom is asserted by the proper choice of the vector 
AR+ The problem therefore reduces to the minimization 
of S in the presence of the Lagrange multipliers ad2 

d[s  - A*(ARn - ARnCxt)l/dA~, 0 (44) 
Here ARn,ext represents the externally imposed displace- 
ment of the terminal atom of the chain, and the Lagrange 
multipliers are conveniently written as A = [A, A, ASIT. 
The solution of the above set of (n - 1) homogeneous 
equations, for m in the range 1 I m I n - 1, together with 
the three identities in 

... I ... 

with 
Acp = 

C O ~  [ A v ~  4 0 2  A v ~  A v ~ ,  AV,+~ *.a k n - 2  A~n-11 
(38) 

AX 5 C O ~  [A$ A@ A X 0  AYO A201 (39) 
Avo 

-01 [uls ua ~.g-lr u,+14 un-2,g ~ n - l a I A c ~ ,  

(40) 

Here col denotes the column. Equation 34 is solved for 
the unknowne Acp and AX by inverting the square matrix 
on the left-hand side and inserting the result in 

AXo e - C O ~  [p, W, v,T]A(p, (41) 

Here the superscript -1 indicates the inverse of the matrix. 
Thus, the optimal changes in the dihedral angles and in 
the absolute location and orientation of the chain segment 
accompanying the torsional motion of any internal bond 
s are computed from eq 42. It should be noted that eq 42 
presents the unique solution for a particular internal 
confiiation. The set of torsional angles characterizing 
that particular configuration is implicitly present in the 
formulation through the intermediate position vectors ri. 
To extract information on the mechanism of the local 
relaxation phenomenon in general, a sufficiently large 
number of Monte Carlo chains with a variety of initial 
configurations needs to be generated. 

Discussion and Concluding Remarks 

of motion of the ith atom reads16J7 
For a chain subject to constrained motion, the equation 

(43) 
where J is the friction coefficient, Vi is the velocity of the 
ith atom, $ is the probability distribution function, and 
U is the potential energy including hindrances to internal 
torsional rotations and the external resistance. Pi is a 
constraining force arising from hard potentials associated 
with constant bond length and bond angles in the case of 
the freely rotating chain model. In the present zero 
temperature approximation, contributions from the dis- 
tribution function drop out of eq 43. The holonomic 
constraints described by Pi are implicitly accounted for 
in the mathematical formalism developed inthe present 
etudy. Inasmuch as no conformational barrier to torsional 
rotations takes place in a freely rotating chain model, the 
potential Ucontains the effect of environmental frictional 

bi = -vi(u+ kTln $) + P i  

(45) 

yields the (n + 2) unknowns, Acpm with 1 I m I n - 1, A,, 
A,, and A,, for the particular case of A$ = A@ = 0. 
Incorporation of the rigid body rotations given by the Euler 
angles A$ and A@ is readily achieved by the use of eq 16 
for ARn and the consideration of two additional equations, 
obtained by differentiating the term in brackets in eq 44 
with respect to A$ and A@. 

In the analysis of internal motions of long chains, the 
vector AX accounting for the external motion according 
to eq 39 may be safely neglected. In this case, the problem 
reduces to the solution of the simpler equation 

Acp = Q<'Acpo (46) 
where Ql, Acp, and A@ are defined in eqs 35,38, and 40, 
respectively. 

Inasmuch as the above theory is a first-order approx- 
imation applicable to differential changes only, in either 
external or internal degrees of freedom, the incremental 
changes Acp, in the rotational states have to be selected 
sufficiently small to avoid any nonlinear response. The 
occurrence of a nonlinear response, if any, may be 
monitored by observing the magnitude of the S function 
during a particular conformational rearrangement. An 
abrupt change in the latter is indicative of a major, large- 
amplitude change in the spatial distribution of atoms, 
which is beyond the range of the applicability of the theory. 
Incremental changes Acp8 of 0.06 rad have proven to be 
compatible with the present mathematical framework, as 
presented in the following paper. For Acp, I 0.06 rad, the 
evolution of the dihedral angles of relevant bonds exhibita 



6314 Baharet al. 

closely the same pattem as a function of cps, and hence the 
adoption of smaller size steps is unnecessary. 

In the present work, the kinematics of a segment 
succeeding a rotameric transition of a given bond was 
emphasized. However, not only the accommodation of 
the segment accompanying a complete isomeric jump but 
the coupled or concerted small-amplitude oscillatory 
motions-to minimize the energy dissipation under the 
constraints of chain connectivity and environmental 
resistanceare also described by the present mathematical 
model. Those highly correlated motions may be partic- 
ularly important in the vicinity of the glass transition 
temperature where free volume limitations hinder large- 
amplitude rotations and superposition of fast librational 
motions predominantly operate in local relaxation.1g21 
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