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For comparison, the variation of RG with chain length is 
also plotted in Figure 7 (dotted curve). Except for xs = 
1 and x = 0.5, t ,  appears to be larger than RG. This is 
in contrast to physically adsorbing chains from solution, 
in which case t,, is usually smaller than RG.16 For xB = 
0 and x = 0, t ,  is approximately 2.5Re This emphasizes 
that terminally attached chains can form highly extended 
layers in comparison with purely physically adsorbed 
chains from solution. 
Conclusion 

Both MC and SCF calculations of terminally attached 
chains predict similar adsorption profiles. Small differ- 
ences have been accounted for in terms of excluded volume 
effects and the periodic boundary condition. At  high 
grafted amounts and for low xs, highly extended adsorbed 
layers are formed, emphasizing the usefulness of these 
systems as steric stabilizers. 
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ABSTRACT The thermodynamics of polymeric networks subject to the action of a solvent is reviewed. 
Expressions for the osmotic compressibility and elastic moduli (bulk and shear) of the swollen network are 
derived in relation to the molecular characterjstiics of the system. The dependence of the osmotic compressibility 
on the equilibrium degree of swelling and the solvent quality is investigated. A strong dependence of osmotic 
compressibility on the nature of the solvent is emphasized. Predictions of the theory are compared with scaling 
arguments and results of experiments on swollen PVAc networks. 

I. Introduction 
Early studies of the degree of swelling of networks ex- 

posed to a solvent were made on butyl' and natural rub- 
bers2 under uniaxial tension and on natural r ~ b b e r ~ ? ~  in 
uniaxial tension, compression, and equibiaxial extension. 
The relationship of the volume changes to elongation in 
poly(dimethylsiloxane) networks in uniaxial extension6 was 
analyzed at  different solvent activities. More recently, the 
mechanical behavior of swollen polymer networks was 
analyzed by experiments such as dynamic (quasi-elastic) 
light scattering, osmotic deswelling, and uniaxial com- 
pre~sion.~,' 

Interpretation of results of the experiments outlined 
above may suitably be made by thermodynamic arguments 
that rest on the proper representation of the total free 
energy of the network-solvent system. In the present 
study, the thermodynamics of network-solvent systems are 
reviewed, with particular emphasis on the formulation of 
the osmotic compressibility and elastic modulus in terms 
of solution properties and network constitution. 

In section 11, the general thermodynamic formulation 
is presented. The total free energy is assumed to be the 
s u m  of the free energy of mixing and the elastic free energy 
of the network. The solvent chemical potential, the os- 
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motic compressibility, and the elastic moduli (bulk and 
shear) of the swollen network are derived. 

In section 111, the dependence of the osmotic compres- 
sibility on the equilibrium degree of swelling and on the 
X-parameter is explored. In many real systems, departures 
from a regular solution are attributed to the concentration 
dependence of the polymer-solvent interaction parameter 
which plays a major role in critical transitions. It is shown 
that for a unique value of the concentration-dependent 
X-parameter critical conditions may indeed result, leading 
to infinite osmotic compressibility. In section IV, the 
theoretically predicted osmotic compressibility and the 
elastic modulus of a swollen network are compared with 
experimental data. The present theory, which basically 
parallels the treatment of ref 1-5, is compared in the last 
section with recent scaling arguments. 

11. General Formulation 
Deformation of Swollen Networks. The state of 

deformation in a polymeric network under stress may be 
decomposed into a dilation and a distortion term as8 

(1) 

Here uZo is the volume fraction of the polymer during 

x = ( V ~ ~ / I J ~ ) ~ / ~ C Y  = ( V /  V0)'l3a 
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cross-linking, and u2 is the volume fraction in the swollen 
system under stress, V" and V are the corresponding 
volumes of the sample. X is the displacement gradient 
tensor defined by the relation Aij = axi/axj', where xi is a 
coordinate of a point in the network in the deformed state 
and xj' is a coordinate of the same point in the reference 
state, Le., the state of cross-linking. The three principal 
components of X are denoted by At, t = 1,2,3. The tensor 
a is defined as aij = d x i / d x j " ,  where xj"  represents a co- 
ordinate of the point in the sample isotropically dilated 
to the volume V. The tensor a defined in this manner is 
a measure of distortion at  constant volume and by defi- 
nition its determinant equals unity. The term (u20/u2)1/3 
or (V/ V")lI3 denotes the isotropic dilation of the network. 

For a swollen network under uniaxial stress in the x1 
direction, letting X1 = A, the two lateral components of the 
extension ratio are obtained from eq 1 as 

(2) 
The coefficient of dilation, q, for such a network is de- 

A2 = A3 = [u20/(u2A)] ' /2 

fined6p8 as 
q = (a In V/d In X)T,p , r l  = 
(a In v/a In A)T,p,nl + (a In V/anl)T,p,A(anl/a In A)T,p,p,pl 

(3) 
where nl is the number of solvent molecules and the 
subscript p denotes the pressure which may be identified 
with the negative of the stress along the transverse di- 
rections.s 

The first term in eq 3, which is designated by qc, rep- 
resents the coefficient for the change in volume of the 
closed system at  fixed composition. It may be expressed 
in terms of the pressure as5 

qc = (a 1n v/a 1n A ) T , ~ , ~ ~  = AKL(aP/aA)T,V,nl (4) 

KL = v-l(aV/ap)T,n,,A (5) 

where 

is the isothermal compressibility a t  fixed length. 
The second term in eq 3 represents the contribution to 

dilation from the change in composition. I t  vanishes for 
closed systems. In semiopen systems, this term, denoted5 
by qs, may be derived from the chemical potential p1 of the 
solvent as 
7s = (a In v/anl)T,p,A(h/a In A)T,p,pl  = 

(aAPl/a In ~ ) T , p , n , / u Z ( a A ~ i / ~ ~ Z ) T , p , A  (6) 

The osmotic compressibility K~~ is defined by the rela- 
tionship 

KO, = Vz-'(aa/du2)&A (7) 
where a is the osmotic pressure. Substituting eq 7 into 
eq 6 and replacing a by -Apl/ Vl, where P1 is the solvent 
molar volume, we obtain 

?s = AKos(aa/aA)T,p,nl (8) 

Equations 7 and 8 are similar in form to eq 5 and 4, re- 
spectively, where the isothermal compressibility a t  fixed 
length KL.constitutes the analogue to the osmotic com- 
pressibility K,. The reciprocal of the latter represents the 
bulk osmotic (compressional) modulus of the network and 
will be denoted by K, in the foll~wing.~ 

Solvent Chemical Potential and Elastic Moduli. 
The chemical potential of the solvent in the network at 
fixed length is given by 

~p~ = ( awan l )T ,p ,A  (9) 
where AA is the total free energy of the system. When AA 
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is assumed to be the direct sum of the mixing free energy 
and the elastic free energy, AAel, eq 9 may be expressed 
as 

Awl = In (1 - u2) + ~2 + X U ~ '  + (aAAel/dnl)T,p,A (10) 

where the solvent-solute interaction parameter x varies 
with solute volume fraction as 

x = + ~ 2 ~ 2  + ~ 3 ~ 2 ~  + ... (11) 
The dependence of the parameter x on composition is well 
established both theoretically and experimentally.loJ1 The 
coefficients xl, x2 ,  ..., are functions of molecular charac- 
teristics and temperature, as determined for a number of 
systems.lOJ1 The truncation of the series in eq 12 at the 
second term is satisfactory for most purposes and will be 
adopted in the present work. 

shows that 
the elastic free energy of a real network may satisfactorily 
be represented by the following function: 

Recent theoretical and experimental 

AAel = (5kT/2)C(X,2 - 1) + 
t 

(~ /2)kTC[(1  + gt)Bt - In {(Bt + I)@, + 1))l (12) 
t 

where 
Bt = (A, - l)(X, + 1 - {X,Z)(l + g,)-2 (13) 

g, = + {(At - 1)) (14) 
Here, denotes the cycle rank, 1.1 denotes the number of 
junctions of the network, and K and { are two material 
parameters. K is a measure of the strength of the con- 
straints operating on the junctions. Depending on the 
molecular constitution and the cycle rank density of the 
network, it may assume values from zero to infinity. K = 
0 and m refer respectively to the phantom and affine 
network limits. According to t h e ~ r y , ' ~ J ~  K is expressed in 
terms of molecular characteristics as 

K = PU2°X,1/2/4 (15) 
where x ,  is the mean number of segmentB in network 
chains and the dimensionless parameter P is defined16 by 

P = ( ( r 2 ) 0 / x c ) 3 ~ 2 N ~ / V 1  (16) 
Here ( r2 ) ,  is the mean-square chain length between 
cross-links and N A  is the Avogadro number. 

The coefficient t in eq 13 and 14 represents the no- 
naffine transformations of fluctuations of junctions from 
their mean locations." This parameter may be construed 
to represent the influence of inhomogeneities in the 
structure and topology of the network. 

For uniaxial stress, the elastic contribution to the solvent 
chemical potential follows from eq 10 and 12 as 
Apel/RT (a(AAedRT)/anl)Tp,A = 

where 

KO2)  = B{@B + l)-l + g@B + g&@B + l)-l] 

with 

(P/X)[l + ( P / F ) m , 2 ) 1  (17) 

(18) 

B = aB/aX2 = (-3{~/2 + { + i ) ( i  + g)-2 - 2g(1 + g)-% 
(19) 

g = ( K - ~  - {) + 3{X/2 (20) 

P = (Vi/RT)(FkT/W = (uz0/xJ(l - 2/41 (21) 
Here 6 denotes the functionality of the network. Sub- 

and 
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Figure 1. Osmotic compressibility (in N-' m2) of a perfect tet- 
rdunctiongl network in terms of the degree of swelling in a solvent 
with RT/ VI = 25 N mm-2. Curves represent results for x = 0.0, 
0.5, and 0.7. The open circles A, B, C, D in each curve are obtained 
for phantom networks with x c  values of lo2, lo3, lo4, and lo6, 
respectively. Calculations for affine networks lead to points 
situated along the same curves, slightly above those for the 
phantom network, as shown by the solid circles. 

modulus in the limit of small deformations (a! - 1) to 
become 
E, = ( ~ ~ T / L , , A ) ( U ~ ~ / U ~ ) ~ ' ~  = ([kT/ (29) 

111. Calculations 
Dependence of Osmotic Compressibility on Equi- 

librium Degree of Swelling. The osmotic compressi- 
bility of the network in the undistorted state is given by 
eq 24', in which the equilibrium degree of swelling is ob- 
tained by equating the corresponding chemical potential 
to zero. Calculations are carried out for a perfect tetra- 
functional network, cross-linked in the bulk state; i.e., u? 
= 1. RT/Vl is set equal to 25 N mm-2, and the x param- 
eter is taken to be independent of concentration (x2 = 0). 
Both affine and phantom limits are considered since real 
networks are expected to exhibit intermediate behavior. 
The results of calculations are shown in Figure 1. Loga- 
rithmic values are displayed in order to compare the 
theoretical predictions with scaling arguments (see Dis- 
cussion). Calculations are made for x = 0.0, 0.5, and 0.7 
to investigate the dependence of K,, on uz in athermal, 8, 
and poor solvents, respectively. 

Each curve in Figure 1 is obtained by varying x,. The 
open circles A, B, C, and D on each curve are obtained for 
phantom networks with x, values of lo2, lo3, lo4, and lo5, 
respectively. An interesting feature that follows from 
calculations is that virtually the same curves are obtained 
for both affine and phantom networks. Results of the 
calculations for x, = IO2, lo3, lo4, and IO5, for an affine 
network are shown by the solid circles located slightly 
above the corresponding phantom network results. 

In the athermal and 0 solvents, an increase in chain 
length results in a strong increase in the osmotic com- 
pressibility as seen from the corresponding curves in Figure 
1. For a network in an athermal solvent, K,, = and 
0.5 N m-2 for x ,  = IO2 and lo5, respectively. The depen- 

stitution of eq 17 into eq 10 leads to 

In (1 - uz) + u2 + ~ 1 ~ 2 '  + x+Z3 + P A W  + ( P / E ) K ( ~ ~ ~ ) I  
(22) 

for the chemical potential of the solvent in a swollen 
network under fixed uniaxial strain. 

On the other hand, from eq 7, the osmotic compressi- 
bility may be written as 

K,, = - ( V ' l / R T ) ( u z a ( A p l / R T ) / a u z ) ~ ~ , ~  (23) 

where -Apl/ Vl has been substituted for the osmotic 
pressure T. Using, in eq 23, the expression for the solvent 
chemical potential given by eq 22, and differentiating with 
respect to polymer volume fraction cause the bulk osmotic 
modulus at  fixed length to become 

Apl/RT = 

K, = K,:' = (RT/V'J[Uz2(1 - Uz) - l  - 2x1Uz2 - 3XzUz3 
P ( u z / ~ z 0 ) ~ z 4 ( ~ / 5 ) ~ ( ~ z Z ~ 1  (24) 

where 
R(X2) = dK/dA2 = BB/(1 + B) + B2/(1 + 

D d / ( l  + D) + D2/(1 + D)2 

B = -[(4gA + 2gB)/(1 + g) + (2Bg2 + 3/4X)/(1 + g)'] 

g = 3f/4X 

D = Bg 
D = Bg + Bg 

B = Bg + 2Bg + Bg (25) 
The osmotic compressibility of a network may conven- 

iently be measured in the free undistorted (a = 1) state.7 
The linear dilation ratio X becomes X = X1 = Xz = X3 = 
( U , ~ / U , ) ' / ~ .  The expression for Apl/RT in this case is given 
by eq 22, where X2 is replaced by A. With this expression 
for Apl, the bulk modulus for the unconstrained, undis- 
torted network is obtained as 
K, = K~:' = (RT/P1){uz2(1 - LIZ)-' - 2 x 1 ~ 2  - 3X2UZ - 

+ 

@/3) (uzo/ 1+ (P/E)K(X2) - 
2 ( ~ / ~ ) ( u z ~ / u z ) ~ ' ~ ~ ( ~ ~ ) l ~  (24') 

The tensile force for simple elongation is given by 

f = LO-'(dAAd/dA),V,n, (26) 

where Lo is the length of the isotropic undistorted sample 
in the direction of stretch, in the reference state of volume 
V', i.e., during cross-linking. The elastic energy is given 
by eq 12. In this equation the first term represents the 
elastic free energy of an equivalent phantom network 
where the junctions and subchains move freely without 
restraint. The second term accounts for the effect of 
constraints on the fluctuations of junctions. The latter 
may be dropped provided that the corresponding con- 
straints are negligibly small, i.e., in situations where the 
experimentally reported Cz value of the Mooney-Rivlin 
equation is equal to zero.5 In this case, the force in uniaxial 
deformation becomes 
f = (EkT/Lo)[h - U ~ ~ / I J Z A ~ ]  = 

( [ ~ T / L ~ ) ( U , ~ / U ~ ) ~ / ~ ( ( ~  - CY-') (27) 
By definition, the shear modulus E, is expressed in terms 
of the tensile force f ,  for an incompressible solid, as 

(28) 

where A designates the cross-section of the swollen spec- 
imen. Combination of eq 27 and 28 causes the shear 

E, = f/3A(a - 1) 
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Figure 2. Relationship of K- to u2 for real networks with different 
degrees of constraint, represented by the K values along the curve. 
Results of calculations for f = 0, x = 0.5, z, = lo4, and u 2  = 1 
are presented. 

dence of K, on x ,  is significantly diminished, however, for 
networks in poor solvents. For x = 0.7, K,, = 5 X N 
m-2 and 8 X lo-' N m-2 for x ,  = lo2 and lo5, respectively. 
For 8 and good solvents, the osmotic compressibility in- 
creases without bound as x,  increases, whereas it converges 
to a finite value for poor solvents. The terminal point on 
the curve for x = 0.7 designated by D in Figure 1 also 
represents the limit as x ,  tends to infinity. 

Calculations for real networks lead to points between 
the phantom and the affine limits. The relationship of K, 

to u2 for real networks with different degrees of constraint 
is displayed on a nonlogarithmic scale in Figure 2, corre- 
sponding to { = 0, x = 0.5, x ,  = lo4, and u20 = 1. The 
different points on the curve show results for networks 
identified by the indicated constraint parameter, K .  The 
value of K for a given network is determined by eq 15. For 
PVAc networks in acetone, for example, considered in the 
present study (see section IV), P = 1.5 as follows from eq 
16. The corresponding K for the network with x ,  = lo4 is 
calculated to be 37.5 from eq 15. 

The dependence of osmotic compressibility on the x 
parameter is further investigated in Figure 3, where K, 

values from eq 24' are plotted for a network with P = 1.5, 
t = 0, x ,  = lo6, and upo = 1.0 as a function of x1 in the 
interval 0.4 < x1 < 0.60. The solid curve is obtained by 
neglecting the concentration dependence of x, i.e., taking 
x z  = 0. The rapid decrease in K,, is significant as the 
solvent becomes progressively poorer. The dashed curve 
is obtained from eq 24' by choosing a fixed value of 0.381 
for xz and varying xl. This value of x 2  is deliberately 
chosen to satisfy critical conditionsls 

acLl = o aAcLl/aUZ = o azAcLl/av; = o (30) 

In fact calculations show that the simultaneous solution 
of eq 30 for the network in consideration leads to x1 = 
0.497, x2 = 0.381, and u p  = 0.058. 

The discontinuity a t  x1 = 0.497 in Figure 3 is a natural 
consequence of the vanishing of the denominator in eq 23 
at  critical conditions, which also corresponds to the ap- 
pearance of infinite fluctuations. The abrupt crossover 
from a good solvent to a poor solvent is clearly visible in 
the dashed curve of Figure 3. The portion of the curve in 
the poor-solvent region is very sensitively dependent on 

0 .5  

X I  

Figure 3. Dependence of osmotic compressibility on the x pa- 
rameter near 8 conditions for a sprollen network with x ,  = lo6, 
P = 1.5, f = 0, u t  = 1.0, and RT/V, = 25 N mm-2. The crossover 
from good- to poor-solvent regime is accompanied by an abrupt 
change in K- as shown by the solid curve. The dashed curve 
illustrates the behavior of K- for a system that undergoes critical 
transition. 

x2, whereas a negligibly small  dependence on xz  is observed 
in the good-solvent region. 

An increase in x ,  has the same effect as a decrease in 
uzo as is apparent from eq 21. Repeating calculations with 
various x ,  values shows that as x ,  increases (or uzo de- 
creases) the portion of the curve in the good-solvent regime 
in Figure 3 shifts toward higher values while K, in the 
poor-solvent regime remains approximately the same. 
Thus the decrease in K,, during crossover is more pro- 
nounced with higher x ,  or equivalently lower u 2  values. 

IV. Comparison of Calculations with Experiment 
Results of osmotic deswelling and compression experi- 

ments on poly(viny1 acetate) PVAc networks7 are shown 
in Figures 4 and 5. The gels were cross-linked in solution. 
Osmotic compressibility measurements were performed by 
deswelling the networks by bringing the swollen system 
into contact with a solution of known activity through a 
semipermeable membrane. Acetone and toluene were used 
as solvents. Results of measurements on the PVAc- 
acetone system are presented only. 

The bulk moduli determined in this manner are shown 
in Figure 4. Values of the bulk moduli are given along the 
ordinate in terms of the function log (uz/Kv). Open circles 
represent the result of measurements. The dashed curve 
is calculated theoretically from eq 24' with the interaction 
parameter as the previously reported'* value of x = 0.437. 
The solid curve is obtained by assuming a concentration- 
dependent function as x = 0.437 + 0.24. The Cz term of 
the Mooney-Rivlin equation was reported7 to be zero for 
all of the networks, indicating that the contribution of 
constraints to the moduli was negligible. This may pre- 
dominantly be due to the fact that the networks were 
prepared at high dilutions. Consequently K and {were set 
equal to zero. RT/ Vl was taken as 35 N mm-2. Each curve 
represents the locus of points obtained by varying (kT/ V' 
(i.e., 0) in eq 24'. Calculations for u20 = 0.03 and 1 resulted 
in approximately the same curve, indicating that conditions 
of preparation of the network do not affect the log u21Kv 
vs. log u2 curve. 

The shear moduli of the swollen networks were inde- 
pendently measured7 under uniaxial compressive stress. 
The reported shear moduli of the swollen poly(viny1 ace- 
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Figure 4. comparison of experimental and theoretical values 
of the bulk moduli of PVAc networks swollen in acetone. Points 
show the results of experiments on samples of different cross-link 
densities.' The dashed curve is obtained from theory with x = 
0.437. The solid curve represents calculations with x = 0.437 + 
0.2u,. 
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Figure 5. Comparison of the bulk and shear moduli of PVAc 
networks in acetone. Circles represent experimental results.? The 
straight line is obtained according to the theory from eq 24' and 
29. 

tate) networks in acetone may be calculated with eq 29. 
In Figure 5, values of bulk moduli, K, are shown in terms 
of the corresponding shear moduli E,. The points repre- 
sent results from experiments.' The straight line is ob- 
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tained by employing eq 24' and 29 according to which the 
ordinate and the abscissa are calculated. Same parameters 
as those in Figure 4 were used. The experimentally ob- 
served proportionality between K, and E, is predicted by 
the theory as shown by the straight line in Figure 5. 
However, the slope of the theoretical curve is about 30% 
larger than that obtained by experiments. 
V. Discussion 

In the present study, the osmotic compressibility and 
the elastic moduli of the swollen polymer networks are 
investigated in relation to their molecular constitution and 
solvent characteristics. The theory allows for the quan- 
titative prediction of K-, K,, and E, over a broad range of 
solvent quality, encompassing the transition from the 
good-solvent regime to the poor-solvent one. Satisfactory 
agreement is obtained between the theoretically predicted 
elastic moduli and those observed in osmotic deswelling 
and compression experiments carried out with PVAc 
networks swollen in acetone, a system representative of 
the behavior in good solvent. 

In recent years, much work has accumulated on inter- 
preting results from mechanical measurements in terms 
of scaling arguments.19 A fundamental relationship that 
plays a major role in scaling considerations is the pro- 
portionality 

R - N' (31) 
where R and N stand for the counterparts of ( r 2 ) 1 / 2  and 
n of the classical approach. The exponent u assumes the 
values 3/5, 1/2, and 1/3 in good, 0, and poor solvents, re- 
spectively. The former two values follow readily from the 
mean field approach formulated by Florym as pointed out 
by de Gennes,19 while the latter results from the spherical 
volume occupied by a collapsed coil. Power laws between 
osmotic pressure, elastic moduli, screening length, etc., and 
polymer concentration rest upon the use of the above 
fundamental proportionality and thus are quantitatively 
valid to the extent that the numerical values of v are 
correct. In fact, the concentration dependence of the 
elastic modulus E (shear and/or bulk modulus) is pre- 
dicted by scaling arguments as 

E - ~2~ (32) 
where the power-law exponent m is related to u by 

(33) 
Accordingly, m in eq 32 assumes the values 2.25, 3.0, and 

in good, 0, and poor solvents, respectively. Thus the 
curves log E vs. log u2 (or alternately log K- vs. -log u2) are 
expected to be linear, with slope m according to scaling 
arguments. However careful examination of Figure 1 
shows that although the curves obtained by the present 
analysis are almost linear the attempt to formulate a 
scaling relationship of the form K--' = K, - u ~ ~ ,  as in eq 
32, fails, unless a limited range of degree of swelling is 
considered. Calculations based on the present molecular 
treatment show that, in 0 solvent, m assumes the values 
of 2.94, 3.13, and 3.52 when u2 = 0.015, 0.09, and 0.35, 
respectively. Additional calculations not reproduced in 
Figure 1 for clarity yield m = 1.94, 2.07, 2.27, and 2.30 for 
u2 = 0.01, 0.04,0.10, and 0.16 in a good solvent with x = 
0.2. Thus in both cases the one-to-one correspondence with 
the powers m = 3 and m = 2.25 for 0 and good solvents 
occurs only within specific concentration ranges. In the 
limit as u2 goes to unity, calculations show that m ap- 
proaches infinity irrespective of solvent quality. 

The value m = m in poor solvents is representative of 
the rapid collapse accompanying the 0 transition. In fact 
such an abrupt change in K ~ ,  can be clearly seen from 

m = 3u/(3u - 1) 
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Figure 3. At critical conditions the osmotic compressibility 
goes to infinity and then suddenly drops to substantially 
low values as shown by the dashed curve. However, the 
present theory also predicts an increased sensitivity of K~ 

on u2 slightly before critical conditions are attained (the 
solid curve in Figure 3). These predictions are in quali- 
tative agreement with recent experimentsz1 carried out in 
the vicinity of the 8 temperature with PVAc in isopropyl 
alcohol. The apparent exponent m is reported to vary 
between 2.31 and 13.3, though no collapse of the gel sys- 
tems is observed.21 

According to eq 32 and 33, the slope of the line log v2/Kv 
vs. log u2 must be equal to -1.25. The experimentally 
observed' values exhibit a slope equal to -1.4. Zrinyi and 
Horkay argue' that this slope is substantially larger than 
the value of -1 predicted by the mean field formalism but 
rather approaches the value of -1.25 predicted by scaling 
laws. The exponent -1 deduced from the mean field 
formalism is based on the truncation of the series expan- 
sion of the logarithmic term in eq 22 after the first term. 
As was pointed out recently,16 the representation of the 
combinatory portion of the chemical potential by the 
truncated virial series is not acceptable unless a manage- 
able number of terms are kept. The terms with powers 
of u2 exceeding 1 cannot be neglected, particularly in the 
semidilute domain. The present work demonstrates that 
by proper treatment of the theory, i.e., by retention of the 
logarithmic term and suitable choice of the concentration 
dependence of the x parameter, the experimental results 
are exactly reproducible. The convergence to the slope -1 
occurs only in the limit as u2 - 0, as the slight curvature 
of the theoretically obtained curve in Figure 4 indicates. 
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,y = -  Vl/(t3Apl/t3u2).  The bulk modulus is then related to K- 

Two-Dimensional NMR Determination of the Conformation of an 
Alternating Styrene-Methyl Methacrylate Copolymer 
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ABSTRACT: Two-dimensional nuclear Overhauser effects (2D NOE) have been used to  study the solution 
conformation of a strictly alternating styrene-methyl methacrylate copolymer. The average solution con- 
formation is determined by measuring the strength of the dipolar interaction between the methylene protons 
on the polymer main chain from the rate of buildup and decay of the cross peaks in the 2D NOE spectrum. 
These rates are inversely proportional to the sixth power of the intemuclear distance and are therefore sensitive 
to the local conformation. The NMR-determined average conformation for the styrene units in cohetero triads 
is 58 f 5% tt, 24 & 5% tg, and 18 f 5% g't with the isomeric states distorted by 1l0 from perfectly staggered 
to accommodate the bulky phenyl groups. These values are compared with those calculated from rotational 
isomeric state models. 

Introduction 
Predicting the macroscopic properties of polymers re- 

quires an understanding of their structural and dynamic 
properties a t  a molecular level and has been the focus of 
intensive research. It is experimentally difficult, however, 
to study the molecular behavior of polymer chains a t  a 
local level, and indirect methods are frequently em- 
ployed.'P2 Measurements of end-bend distances or dipole 
moments are examples of indirect means by which one may 
hope to deduce local properties-principally bond rota- 
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tional states-by comparison with theoretical predictions 
from rotational isomeric state  model^.^ 

NMR has been extensively employed to determine the 
structure and dynamics of polymers both in solution and 
in the solid ~ t a t e . ~ ? ~  Proton NMR has made major con- 
tributions to our understanding of the microstructure of 
synthetic polymers, but during the past 15 years had been 
largely eclipsed by carbon-13 NMR because of the much 
greater range of carbon chemical shifts and the corre- 
sponding greater sensitivity to structural detail. Proton 
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