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Molecular dynamics simulations have been performed for a bead-spring model chain of 30 beads 
immersed in 738 solvent molecules. The solvent-solute interaction energy .sbs has been varied in 
the range 0.1<~~~<0.8 kcal/mol to assess the role and importance of solvent type on the dy- 
namic and equilibrium properties of the chain. Radial distribution functions for polymer bead- 
solvent and bead-bead pairs indicate the enhancement of more expanded chain configurations 
with increasing quality of the solvent. The translational diffusivity D of the chain exhibits an 
inverse linear dependence on &bs, thus decreasing in the presence of more favorable polymer- 
solvent interactions. Molecular dimensions of the chain such as the mean-square end-to-end 
distance (3) and the radius of gyration R, are examined in various solvent environment. The 
ratio (3)/R: approximates the limiting value of 6 corresponding to infinitely long freely jointed 
chains. A linear dependence of D on l/R, is observed, in conformity with the Zimm theory of 
dilute polymer solutions subject to hydrodynamic interactions. The orientational motion of 
internal chain vectors is also found to slow down with increasing strength of intermolecular 
interactions, in parallel with the translational diffusivity. Characteristic orientational relaxation 
times T are calculated for chain segments of various sizes IZ, using the initial decay rates of the 
corresponding orientational autocorrelations functions. These are found to obey a scaling law of 
the form 7-n’ for a given &bs . The exponent a therein decreases with the quality of the solvent, 
assuming values in the interval l.O<a< 1.5 throughout the investigated range of polymer-solvent 
interactions. 

I. INTRODUCTION 

Most analytical treatments of polymer configurational 
statistics are based on ideal chain models, in which the 
specific solvent effect and the intramolecular volume exclu- 
sion are neglected.’ Yet, the perturbations in chain equi- 
librium and dynamic properties arising from those effects 
are widely recognized.s-‘8 Models based on single chain sta- 
tistics are applicable, in a strict sense, only in particular 
cases such as dilute polymer-solvent systems under theta 
conditions, or polymers in the bulk state where a given 
chain does not distinguish between the surrounding mole- 
cules and intramolecular chain segments. Otherwise, the 
intrachain excluded volume effect and the specific solvent- 
polymer interaction need be considered as essential re- 
quirements for the realistic estimation of the static and 
dynamic properties of polymers in solution. 

Simulation of polymer-solvent systems is a useful tool 
to investigate the behavior of polymers in various environ- 
ment.g*‘O Among various computational methods, Monte 
Carlo generations do not generally supply information on 
chain dynamics, except for dynamic Monte Carlo studies” 
coupled with Metropolis algorithm which have proven use- 
ful for probing the dynamics of polymeric systems. Brown- 
ian simulations do reproduce most of time-dependent pro- 
cesses and are particularly useful for the study of 
relaxation phenomena with time scales on the order of 
nanoseconds; however, the solvent bombardments are ap- 
proximated therein by a normal noise only, and an adjust- 
able friction coefficient is adopted for representing the ef- 

fective frictional drag of the surroundings. Those two 
limitations render this method inappropriate for the assess- 
ment of specific solvent effect. In this respect, molecular 
dynamics (MD) simulations, which consider precisely the 
interaction between the individual constituents of a mix- 
ture, are particularly suitable. This method will be pres- 
ently employed. It is noted that that the intrachain ex- 
cluded volume effect is also inherently present in MD 
simulations, as interactions between all nonbonded units 
along the chain are explicitly accounted for. 

Molecular dynamics has proven to be a valuable tool 
for understanding the mechanism and evolution of several 
time-dependent processes in polymeric systems, such as 
orientational and translational motions in solutioni2-‘* or 
in the bulk state,1gP20 freezing in of internal rotational mo- 
tions near the glass transition21 diffusion of simple gas 
molecules in polymer matrix,22’23 cooperative transitions of 
bonds between rotameric states in isolated chain seg- 
ments,23-27 viscoelastic behavior of amorphous polymers 
under stress.28 The model chains used in MD simulations 
are selected at different levels of sophistication depending 
on the specific properties under study. Bead-rod model 
chains (or Kuhn equivalent freely jointed chain) and 
bead-spring chains are’classical examples which have been 
adopted in early simulations of chain dynamics,‘2,‘3*2g and 
continue to be exblored.1”‘8 These simple models are par- 
ticularly suitable for verifying various scaling arguments3’ 
and/or for establishing some concise analytical expressions 
relating chain size to static and dynamic characteristics. 
The bead+pring model will be adopted here to investigate 
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the role of solvent-polymer interaction on the observed 
static and dynamic properties of the chain. Another group 
of MD studies’g-27931-33 incorporates the structure and en- 
ergy parameters of real chains, based on the rotational 
isomeric state model’ of equilibrium statistics; their ap- 
proach is essential for establishing the physical connection 
between theory and experiments, and for rationalizing the 
distinct behavior of different macromolecules. 

Our approach closely approximates that of Luque, 
Santamaria, and Freire,15 whose MD simulations indicate 
a systematic perturbation in chain properties due to spe- 
cific solvent effect. This effect was studied in their work for 
a chain of Nb= 12 beads in N,=343 solvent molecules, by 
comparing the MD results obtained for three distinct val- 
ues of solvent-polymer interaction energies. Chain dimen- 
sions (mean-square end-to-end distance (3) and radius of 
gyration Rg) and the associated relaxation times were 
found to increase smoothly with increasing quality of the 
solvent, contrasting the work of Oh, Lee, and Ree,34 in 
which these properties did not exhibit a monotonous vari- 
ation with solvent quality. A thorough analysis will be 
performed in the present work, by progressively varying 
the polymer-solvent interactions for a system composed of 
a chain of N6=30 beads immersed in 738 solvent mole- 
cules. In the presence of more favorable polymer-solvent 
interactions, the enhanced tendency of the chain segments 
to maximize their contact with solvent molecules will lead 
to more expanded configurations, in agreement with the 
work of Luque et al. l5 The increased chain dimensions, in 
turn, will be shown to imply slower relaxation processes, 
not only on a global scale, but also at the level of individual 
backbone bonds. 

as the static and high frequency dynamic properties of the 
chain are concerned, but need be considered for a realistic 
interpretation of slower/global relaxational processes, such 
as the overall translational diffusivity of the chain.” The 
net consequence of those hydrodynamic interactions is the 
slowing down of the overall chain motion, in parallel with 
the effect of an increased concentration. A practical ap- 
proach to eliminate the bias arising from finite-system-size 
effects, was shown to perform simulations at fixed RJL 
ratios, for a comparative analysis of the behavior of chains 
of various length Nb in solution. By this approach, the 
scaling law D-N;“, in which the exponent takes on the 
Zimm value ~~0.6 in good solvent and 0.5 in theta sol- 
vent, has been verified for polymer solutions subject to 
hydrodynamic interactions.” 

Two dynamic properties will be of interest: (i) the 
translational diffusivity D of the overall chain, and (ii) the 
orientational mobility of chain segments of various sizes. 
The former is a global property which has been widely 
investigated in previous studies for chains of various 
lengths Nb, for the case of athermal solutions in general. 
The second property refers to internal conformational mo- 
tions in polymers. The correct assessment of solvent effect 
on local conformational dynamics might be critically im- 
portant for the interpretation of experiments such as NMR 
spectroscopy, fluorescence anisotropy, high frequency di- 
electric relaxation, etc., measuring characteristic relaxation 
times associated with short-range orientational motions in 
polymers. Yet, to our knowledge, no detailed MD analysis 
of the segmental relaxational processes in various environ- 
ment has been performed so far, 

Recently, Diinweg and Kremer drew attention to the 
occurrence of hydrodynamic interactions between the 
chain and its periodic images in standard MD simula- 
tions, ” and proposed the replacement of the Oseen tensor 
by the corresponding Ewald sum for an accurate compar- 
ison of the results with the predictions of the Kirkwood 
theory. Later MD simulations of chains of various length 
(6<N&30) in simulation boxes of various sizes, in the 
range 0.16RJL~0.3, where L is the edge of a cubic box, 
indicate that such finite-system-size effects (or artifacts of 
periodic boundary conditions ) are inconsequential insofar 

In view of these arguments, the correct origin of the 
reduced mobility of the chain in good solvent environment, 
which is observed in the present work, will be thoroughly 
analyzed. Inasmuch as the finite-size effect is negligibly 
small in the case of high frequency motions, the MD re- 
sults obtained for highly localized motions need not be 
examined along these lines. However, the center of mass 
diffusion might be perturbed by this effect. Clearly, the 
chain expansion in good solvent leads to an increase in the 
radius of gyration and/or the hydrodynamic radius, even 
in infinitely dilute solution, and hence to a slowing down of 
chain motion in general. However, the enhancement of the 
possible hydrodynamic interactions with the image beads 
may be an additional factor, now of interchain origin, fur- 
ther reducing the rate of relaxational motion of chains in 
highly expanded configurations. With this object in mind, 
some simulations are repeated by varying L and N,, and 
keeping the ratio R.JL fixed, in order to estimate the in- 
terchain hydrodynamic contribution to the observed be- 
havior. No significant deviations in the diffusivity could be 
observed-other than those within statistical errors of 
Green-Kubo integration results-for the chain of Nb= 30 
units, upon varying the size of the simulation box in the 
range 0.15<R,JL<0.25. Although a weak tendency to 
move faster in a larger box or vise versa is discernible, the 
contribution of this effect to the observed behavior is mi- 
nor, and we conclude that in the investigated concentration 
regime the decrease in chain mobility is mostly affected by 
local solvent polymer interaction rather than occasional 
interactions with image beads. Besides, it should be recog- 
nized that for a solution with fixed concentration, possible 
increases in hydrodynamic interactions due to configura- 
tional expansions in good solvent, and the associated de- 
crease in chain diffusivity, do exist and need not necessarily 
be viewed as artifacts of simulations. They should certainly 
be considered when interpreting the results in terms of the 
Kirkwood formalism, inasmuch as the effective hydrody- 
namic radius is modified. However, the possible slowing 
down of the chain, arising from enhanced polymer- 
polymer interactions, might be viewed as an indirect con- 
sequence of the configurational expansion of the chain in 
response to good solvent conditions, in a system of fixed 
concentration. 
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II. MODEL AND METHOD 

A. General approach 

The system consists of iV,=738 solvent molecules and 
a polymer chain of Nb= 30 beads, each of equal mass m. A 
cubic simulation box composed of body-centered cubic 
(bee) lattice sites is adopted for describing the original 
coordinates of the set of Nb+N,=N particles. The box is 
subject to periodic boundary conditions. The particles are 
originally placed at the centers and four of the corners 
along opposite diagonals of each bee lattice site, thus lead- 
ing to a tetrahedral arrangement for the polymer bonds in 
their original state. This structure will be certainly lost 
during simulation but such a symmetric arrangement of 
chain beads at start has the advantage of necessitating 
shorter equilibration period compared to randomly placed 
beads. Following this prescription, each site accommodates 
1.5 particles. Thus the set of N=768 particles considered 
in the majority of simulations results from a cubic box of 8 
bee sites along each edge. The first bead of the polymer 
chain and the particular sequence of connected beads are 
selected by a random number generator subroutine. Ac- 
cordingly, for the choice of the bead i+ 1 along the chain, 
the random number generator assigns one tetrahedral di- 
rectional vector among those (three or less) accessible to 
bead i. The term accessible refers here to those directional 
vectors leading to sites which are not already occupied by 

the previously selected beads. The position vector of the ith 
particle (polymer bead or solvent) is denoted by ri, with 
respect to the laboratory-fixed frame whose origin is con- 
veniently located at the center of the simulation box. The 
initial velocities are assigned in conformity with the Bolt- 
zmann distribution at the simulation temperature. The net 
linear momentum is set equal to zero by subtracting the 
mean velocity from the individual velocities at each step. 
Isothermal conditions are maintained by monitoring and 
resealing the velocities of the particles at regular time in- 
tervals. Inasmuch as the total energy is also conserved 
along the trajectory, the resulting averages approximate 
the behavior of an isoenthalpic-canonical ensemble. Veloc- 
ity resealing to correct for thermal drift is of negligible 
consequence in the case of stationary processes and has been 
commonly used in previous MD studies.35-37 However, it is 
noted that more rigorous approaches38P3g become manda- 
tory for the constant temperature and/or pressure simula- 
tion of nonequilibrium processes such as chemical reactions 
and phase changes. 

B. Interaction energies 

The interaction between the nonbonded pair of parti- 
cles i and j at a distance rij’ 1 rj -ril from each other is 
taken to be of the form of the shifted-force potential9 

I V&-i;) - Vdr,) - (rii-r,)(dV,(rii)/~r~~)~i~=~= rijQ r, (1) 
Vsdrij)= 

I 
o r -, r 

ij c 
, 

I 

where Ym(rii) is the Lennard-Jones (LJ) (6-12) potential 
given by 

~or.r(Z~)=-0.5k0Z~ln[l-(Zi/Zo)2] &la, 
(3) 

VQH(li) = CO Ii>&, 
(2) 

and r, is the cutoff distance beyond which the interaction 
vanishes. Eij and Oij in Eq. (2) are the respective energy 
and distance parameters corresponding to the particular 
pair of particles i and j. The adoption of a cutoff separation 
introduces discontinuities in the absolute value and slope 
of the interaction energy at r,, which are eliminated by the 
addition of the last two terms in Eq. (1). Minimum image 
convention is used for the specification of rij.g The sub- 
scripts i and j of the above variables will be replaced by 
either s (solvent) or b (polymer bead) depending on the 
type of interacting particles. The van der Waals radii and 
consequently the length parameters of polymer beads and 
solvent molecules will be assumed to be equal to each 
other. Thus the subscript ij in the LJ length parameter Uij 
will be omitted for brevity. The cutoff separation is taken 
as r,=2.5 0: The elastic potential of the ith spring is given 
by the so-called finitely extendable nonlinear elastic or 
FENE potentialw2 

where Zi is the instantaneous length of the ith spring. The 
subscript QH refers to the quasiharmonic nature of the 
potential. k, and 1, are the energy and length parameters of 
the quasiharmonic potential, respectively. The above form 
of connector potential has found widespread use in previ- 
ous MD studies of polymer solutions.‘3”5’17 This function 
is monotone strictly increasing with Zj, thus favoring small 
extensions and eventual overlap of the beads. Yet, the 
beads can not actually approach each other by more than 
some limiting separation, as inherently implemented by the 
shifted potential function of Eq.. ( 1 ), which applies to all 
pairs of nonbonded beads. Thus the total potential of the 
polymer chain results from the contributions of both Eqs. 
( 1) and (3), summed over all relevant pairs. For a system 
composed of a single polymer chain surrounded by solvent 
molecules, the total interaction energy reads 

N-l N Nb-1 

u= z c VSF(rij)f k& VQH(~~. 
i=l j=i+l 

(4) 
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TABLE I. Simulation parameters and reduced variables. 

Real variables and absolute values 

Particle mass, 112 
LJ length parameter, o 
QH length parameter, I,, 
Temperature, T 
Box volume, V=L3 
Number density; p = N/ V 
Time step, At 
W energy parameter, ebb 
W energy parameter, ess 
LJ energy .parameter, ebs 
QH energy parameter, kc 

(12/N,) g 
2.7 A 
5.265 8, 
378 K 
(24.3 Aj3 
0.0535 A-9 
4.57 fs 
0.5 kcal 
0.5 kcal 
0.1-0.8 kcal 
2OedC? 

Dimensionless variables and reduced values 

m,=m/m* 1 
a,= u/c+ 1 
lo,= Idti 1.95 
T,=RT/E* 0.75 
v,= v/c+3 9.03 
I%= Pa*9 1.054 
At =At/(dr2m*N,/@)‘” r 0.01 
%r= %d@ 0.5 
-%sr= %J@ 0.5 
Ebsr= EbdE* 0.1-0.8 
k,,= k,,o*‘/.+’ 10 

‘N,=Avogadro number. Reference values: m*= (12/N,) g; @=2.7 A; @= 1.0 kcal. Other reduced vari- 
ables: r,=r(/ti; v,=vi(m*NA/ir) “2; a,=a,tim*NA/E*. 

The first summation in Eq. (4) is performed over all of the 
N particles present in the simulation box, except for the 
first neighboring beads along the chain. The second term 
accounts for the quasiharmonic potential of the springs. 

C. Simulation algorithm and parameters 

The equation of motion for the ith particle, lgi<N, 
reads 

miai=fi= -VriU, (5) 

where mi=m is the mass of particle i, fi is the force exerted 
on particle i, aj is its acceleration, and VriU is the gradient 
of the potential U with respect to ri. The modified Verlet 
approach with the recurrence equations given by9,43 

ri(t+At) =ri(t) +Atvi(t) +$(At)2ai(t) 

-d(At)2ai(t-At), 

v,(t+At) =vi(t) +iAtai(t+At) +sAtai(t) 
(6) 

-iAtai( t- At) 

has been used. Here Vi(t) is the velocity of particle i at time 
t, and At is the size of the time step. This algorithm, in 
which the acceleration ai( t-At) is stored in addition to 
ri( t), vi(t), and a,(t), allows for a more accurate estima- 
tion of velocities compared to the classical Verlet method, 
and consequently brings about an improvement in energy 
conservation.’ 

The recurrence equations given by Eq. (6) may be 
identically rewritten in terms of reduced variables listed in 
Table I. The parameters ml, ti, and E* therein represent 
the reference values which are used to obtain the reduced 
variables. The values of the parameters used in simulations 
are listed in Table I, as well as the expressions and values 
for their reduced counterparts, indicated with the subscript 
r. The expression for the reduced velocity vir follows from 
the broadening of the Gaussian distribution of velocities by 
a factor of (m*NA/& * 1’2 due to the use of reduced tem- ) 
perature and mass in the Maxwell-Boltzmann expression. 
The LJ parameter +,S is subjected to variations within the 
range 0.1&,,<0.8 kcal/mol, while the other two interac- 
tion potentials are kept fixed at +,=~~,=0.5 kcal/mol. 

The reduced number density pr= 1.054 is equivalent to an 
absolute mass density pm of 1.07 g/cm3, as follows from 
the identity pm=NmNA/L3. The values L=9ti and N, 
=738 have been used in the simulations, except for a few 
runs performed with the aim of estimating the role of hy- 
drodynamic interactions, as will be indicated. Table II il- 
lustrates for three selected values of ebS, namely, 0.2, 0.5, 
and 0.8 kcal/mol, the mean values and standard deviations 
of different types of energies, resulting from short runs of 
lo4 steps. The quasiharmonic potential energies VQH listed 
in the second column represent the average over the tra- 
jectory and over the Nb- 1 springs. The temperatures were 
resealed every 200 time steps. The shifted force potentials 
VsF and the kinetic energies correspond to averages over 
all units, i.e. polymer beads and solvents. The negative 
values for the mean VsF indicates that, in general, favor- 
able interactions, i.e. good solvent conditions, are brought 
about by the present choice of simulation parameters. 

Ill. RESULTS AND DISCUSSION 

In general, an increase in Eij strengthens the interac- 
tion, both attractive and repulsive, between particles i and 
j. However, the attractive portion of the LJ energy curves 
is more sensitive to Eij while the steep change in the repul- 
sive regime is weakly affected. Thus the effective change 
brought about by an increase in &ii is to enhance the fa- 
vorable interaction between particle i and j, as may be 
verified from the VsF values listed in Table II. Accordingly, 
a lower value for E,,~ should give rise to a more compact 

TABLE II. Mean energies (kcal) per unita and their standard deviations. 

Ebsr VW vSF Kinetic T, 

0.2 MEAN 2.072 -0.096 1.125 0.750 
SD. 0.05 1 0.009 0.026 0.017 

0.5 MEAN 2.070 -0.197 1.125 0.750 
SD. 0.057 0.008 0.026 0.017 

0.8 MEAN 2.023 -0.343 1.125 0.750 
S.D. 0.062 0.010 0.027 0.018 

Wnits refer to polymer springs in the case of quasiharmonic (QH) po- 
tentials; both solvent molecules and polymer beads for shifted force po- 
tentials and kinetic energies, on molar basis. 
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FIG. 1. Radial distribution function gbS(r) from MD simulations for 
solvent molecule-polymer bead pair as a function of the reduced separa- 
tion r/dr. Results are shown for systems subject to distinct reduced 
polymer-solvent interaction parameters ~~~ ,=&,,JE* = 0.1, 0.3, 0.5, and 
0.8, as indicated, using the simulation data given in Table I. Intermolec- 
ular separations are observed to increase with decreasing quality of the 
solvent, i.e., with increasing E,,~ values. 

chain configuration. With these qualitative features in 
mind, we now turn our attention to the influence of 
solvent-polymer interaction on various properties. 

1. Radial distribution functions 

The radial distribution function gij( r), also referred to 
as pair-correlation function, gives the unnormalized prob- 
ability of finding a pair of particles i and j a distance Y 
apart. gij(r) is evaluated from 

gij(r)=(P-l/N)(nij(r))/(4?ri2Ar), (7) 

where the number (nij( r> ) of particles located at a dis- 
tance r from each other is found from the time average of 
nij(r) =2SdrZi~jzb(r-ri+rj). This integration is per- 
formed over a thin spherical shell of thickness Ar, about r, 
and the summations of the delta functions include all pair 
of particles of type i and j with j#i, changing in the range 
[ 1, N,J for polymer beads and [ 1, NJ for solvent molecules. 
In the limit as r becomes infinitely large, using image par- 
ticles convention throughout space, gij( r) approaches the 
ratio NiIvi/N2, for i#j and Ni(Ni- 1 )/N2 for pairs of the 
same type. Thus the radial distribution curves should ap- 
proach unity provided that they are normalized with re- 
spect to these asymptotic values. Both time and ensemble 
averages are used in evaluating gij( r), leading to curves 
with minimal noise. 

The computation of pair correlation functions from 
MD simulations is not new but has been performed here 
for an assessment of the compliance of our results with 
previous work, Is and for a clear visualization of the change 
in intrachain separations as a function of solvent type. Fig- 
ures 1 and 2 illustrate the dependences of gbs(r), gbb(r), 
and g,(r) on solvent quality. The grid size is taken as 
Ar=O.Olti. Short durations of simulation (- lo4 time 
steps) are found to be sufficient to reproduce- 
indistinguishably-each of the curves displayed in the fig- 

. 
0.8 1.2 1.6 2.0 2.4 2.8 

r/o* 

FIG. 2. Radial distribution function gbb( r) from MD simulations for 
pairs of non bonded beads of polymer chain as a function of the reduced 
separation r/dr. Results are shown for the reduced polymer-solvent in- 
teraction parameters E&E* =O. 1, 0.5, and 0.8. The upper small diagram 
on the right is obtained with the same set of data and illustrates the 
insensitivity of solvent-solvent pair correlation function g,,(r) to 
polymer-solvent interaction. 

ures. The tendency of the chain to assume more expanded 
configurations in good solvent, i.e., with increasing &bs, is 
manifested in Fig. 1 by the larger gbs(r) values attained at 
short separations in media with higher &&, in agreement 
with the MD results obtained by Freire and collaborators” 
for a smaller system. We note that the successive peaks in 
the distribution function occur at locations r/8- 1.1, 2.0 
and 3.0, in perfect agreement with previous work, in which 
the same model and comparable energy and length param- 
eters have been adopted.” The gradual shifting of the first 
peak to larger r/a*’ values with increasing &bS is also in 
quantitative conformity with previous MD results.” The 
oscillations of gb, (7) corresponding to successive shells of 
neighbors are observed to be stronger with increasing &bS . 
Weaker &bS values, on the other hand, induce less pro- 
nounced peaks associated with more randomized relative 
positions of particles. This feature is indicative of the in- 
creased diffusional mobility of the particles in the presence 
of weak intermolecular associations, which will be further 
exploited below. 

The intrachain radial distribution function gbb (r) 
shown in Fig. 2 has been evaluated on the basis of non- 
bonded units along the chain. First neighboring units are 
not included in this analysis inasmuch as their separation is 
predominantly determined by the quasiharmonic potential 
and attention here is primarily focused on the influence of 
solvent quality on the spatial arrangement of the atoms/ 
beads. The distribution of bond lengths I in response to the 
changes in solvent quality will be separately considered 
next. A strong dependence on &bS is observable in Fig. 2, in 
conformity with the behavior described above: The beads 
come closer to each other as the solvent becomes poorer. 
The diagram on the upper right part of Fig. 2 shows the 
solvent-solvent radial distribution functions g,,(r) which 
have been obtained in MD simulations, for various EbS. The 
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FIG. 3. Distribution W(Z) of bond/spring lengths I in chains subject to 
interactions of various strength with the surroundings. .sbs/&* values are 
0.1, 0.3, 0.5, 0.7, and 0.8 as indicated by the labels on each curve. The 
unimodal distrib,ution of bond lengths for low cbs I values is gradually split 
into two peaks as the association between solvent and polymer is strength- 
ened. The lower dashed curve is the distribution for isolated dumbbells 
subject to FENE potential with the same parameters. 

insensitivity of g,,(r) to &bS is legitimate for the highly 
dilute system presently investigated. 

2. Equilibrium distribution of bond/spring lengths 

Figure 3 displays the probability distribution W( Z/c?) 
of the reduced length Z/8 of bonds for various &bS values. 
The zero level of the distribution curves are vertically 
shifted by a value of 1.0 for clarity. Interestingly enough, . . with increasing &bS the approximately Gaussian shape of 
the distribution is distorted into a bimodal structure. For 
isolated dumbbells subject to the FENE potential, the con- 
nector length distribution is given bya 

W,n(Zi)=J[1-(Zi/ZO)2]~IZd2kT Zi<Zc, 
(8) 

WQHCzi) =O zi>zO, 

where J is the normalization constant. The lowest dashed 
curve in Fig. 3 is calculated by inserting the FENE param- 
eters of Table I, adopted in simulations, into Eq. (8) mul- 
tiplied by 47~Zf. All of the curves are normalized. Compar- 
ison of the dashed curve with those resulting from MD 
simulations indicates that the chain connectivity and the 
interaction with the surroundings substantially modify the 
distribution corresponding to isolated dumbbells. In gen- 
eral, the mean of the distribution function is shifted to 
larger values (i.e., from -0.40 to 0.56) when the dumbbell 
belongs to a chain. This shift is presumably forced by the 
intrachain Lennard-Jones type potential, which requires 
second neighboring bonds to be separated by a distance of 
about 21’6@. This requirement leads to an average sepa- 
ration of 0.568 between adjacent beads, in exact confor- 
mity with the MD results. At &bs=O. Is* the attractive po- 
tential of the environment is relatively weak to perturb the 
shape of the distribution function and a unimodal distri- 
bution centered about 0.56ti is observed. However, as the 
interaction between polymer and solvent is strengthened, 
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FIG. 4. Time decay of the autocorrelation function (v,,,,(O) . v,,,(t))/ 
(v&,,) of the polymer mass center velocity v,,,. . The abscissa represents 
the reduced time t/At or the number of MD time steps. Curves are given 
for .+Ja*=O.l, 0.3, 0.5, and 0.8. 

the distribution is gradually modified into a bimodal shape. 
The peak to the right may be attributed to an increased 
separation between adjacent beads due to their simulta- 
neous interaction with a single solvent molecule. These two 
beads that are strongly attracted to a single molecule are 
being forced apart by that interaction. However, when the 
corresponding bond assumes this increased length, its first 
neighbor has to assume a relatively contracted configura- 
tion in order to comply with the requirements of intrachain 
LJ potential between second neighbors, and hence the ap- 
pearance of the accompanying peak at the left. 

3. Translational diffusivity as a function of 
solvent-polymer interaction 

The diffusion coefficient is computed from the time 
decay of the chain center-of-mass velocity autocorrelation 
function (v,.,, (to) * v,.,, (to + t) > according to the Green- 
Kubo relationship 

DE; 
J- m (bll.(b) ~bn.(to+t>w, (9) 

0 

where the angular brackets refer to the time average over 
initial times to. This average relies on the independence of 
the dynamics of stationary processes upon the time origin. 
The velocity v,.,.(t) of the polymer mass center at a given 
time t is found from the average of the instantaneous ve- 
locities of the Nb beads as v,,.(t) =NF1&vi(t). 

Figure 4 displays, the time decay of the normalized 
velocity autocorrelation function of the polymer mass cen- 
ter, for various &bS values as indicated by the labels. The 
abscissa is the ratio t/At of the elapsed time t to the time 
step At of simulation. Full relaxation of v,,-,.( t) is observed 
to occur in the~range of picoseconds. The weak statistical 
noise of the decay curves in the long time range is mini- 
mized by taking averages over simulations with durations 
of about 10’ time steps, for each &bS. The fluctuations oc- 
curring in the long time portions of the curves do not arise 
from any statistical uncertainties but are identically repro- 
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FIG. 5. Dependence of polymer translational diffusivity on solvent- 
polymer interaction. Reduced diffusion coefficient D, is plotted against 
the polymer-solvent interaction parameter .sbs (which coincides with the 
reduced quantity sbn/&* as E*= 1 kcal/mol). The filled circles represent 
the averages of several runs of IO4 time steps performed with the data of 
Table I for each sbr value, which are illustrated in the upper small dia- 
gram. Best-fitting line is drawn through the MD results to guide the eye. 
The empty triangles represent the results obtained by keeping R/L fixed 
at RdI~0.21, and rcscaling the size of the simulation box accordingly. 
The empty circles at st,J.s*=O.l, 0.3, 0.5, and 0.8 in the figure (and the 
filled circles in the upper small diagram) represent results obtained from 
Einstein plots illustrated in Fig. 6. 

duced in repetitive runs, indicating the particular structure 
of the time decay of (v,.,,( to) * v,,,,( to+t> ). Performing a 
set of short runs with different original configurations 
rather than a single run of long duration has proven to be 
a computationally efficient method of determining the de- 
cay curves. The resulting translational diiusion coefficients 
are shown by the filled circles in Fig. 5 as a function of &. 
Results are displayed in reduced units D,= D(m*iV/ 
E*) “2/@. Best fitting straight line is drawn through the 
results, to guide the eye. For illustrative purposes, the dif- 
fusion coefficients calculated from short runs of 104 time 
steps are plotted in the upper small diagram in the figure. 
This diagram gives an estimate of the scatter of D, values 
resulting from successive runs of different original config- 
urations. However, by taking the averages for each given 
cbs, the smooth linear decrease of Dr with increasing sol- 
vent quality emerges. The tendency of D, to decrease with 
increasing &bS is also pointed out by Luque et al I5 for 
shorter chains (Nb= 12) while a similar study performed 
by Oh et aZ.34 does not confirm this monotonous change. 
The present study indicates that numerical uncertainties 
are eliminated only if sufficiently long simulations with a 
variety of different original configurations are performed. 

As a further check, the diffusion coefficients were also 
computed from the long time slope of the mean-square 
displacement of the mass center as a function of time, using 
the Einstein relationship 

6 Dt=([r,.,.(~o+t>-r,.,.(~o>12)=([Ar,.,.(t)12) 
(10) 

where r,.,. is the instantaneous position vector of the cen- 
ter of mass, and the brackets refer to average over various 
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FIG. 6. Mean-square displacement of the mass center ([Ar,,,, (t)]‘) as a 
function of time, for polymer-solvent interaction energies sbS=O.l, 0.5 
and 0.8 kcal/mol. 

initial times to. Figure 6 displays the change in 
([Ar,,,.(t)]2) as a function of time for &&=O. 1, 0.5 and 0.8 
kcal/mol. The resulting diffusion coefficients, calculated 
from the slopes according to Eq. (lo), are displayed by the 
empty circles in Fig. 5, and by the filled circles in the upper 
small diagram of the same figure. 

4. Translational diffusivity in relation to chain 
dimensions 

The change in the diffusivity of the polymer with the 
solvent quality is an effect which should be rather attrib- 
uted to the change in the equilibrium spatial distribution of 
chain atoms in response to their interaction with the sur- 
roundings. In fact, Fig. 2 already confirmed that the inter- 
atomic separations are significantly perturbed by specific 
polymer-solvent interactions. These perturbations are di- 
rectly reflected on chain dimensions such as the mean- 
square end-to-end separation (2) and the radius of gyra- 
tion Rg- (A?) 1’2, as presented in Table III, which in turn 
affects the chain diffusivity. Figure 7 displays the change in 
diffusivity with radius of gyration, resulting from runs per- 
formed for various &bs. The reduced diffusion coefficient is 
plotted therein against the reciprocal of the reduced mean- 
square radius of gyration, I/(L?>~‘~. (3), is computed 
from 

(11) 

TABLE III. Mean-square chain dimensions and expansion coefficients a 
as a function of solvent quality. 

ebsr (I?, A' m, A2 aza 

0.1 83.86h5.81 19.57hO.93 1.265 
0.3 155.30+ 19.19 29.96* 1.29 2.342 
0.5 226.73h12.90 40.34* 1.69 3.420 
0.8 333.90*11.55 55.91 bO.04 5.036 

aThe expansion coefficient is calculated from a*= (?)/(Nb- 1) I’, where 
I is the average bond length taken as 0.56 dr. 
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FIG. 7. Dependence of D, on the radius of gyration R, (or (?)“‘), 
irrespective of the specific solvent-polymer interaction. The abscissa is the 
reciprocal of the reduced radius of gyration, written as l/(&i”. Filled 
circles represents the averages over grids of l/(.?):‘2=0.05 evaluated 
from runs of lo5 steps, performed for various .sbS values in the range 
0.1(&,,,(0.8 kcal/mol. The small diagram on the right illustrates the 
results from independent runs of lo4 steps. The empty triangles are found 
by keeping the ratio R./L fixed at 0.21. 

where the brackets refer to time average over several snap- 
shots in a given run. The small diagram on the right illus- 
trates the results and their fluctuations obtained from suc- 
cessive runs of lo4 steps, in parallel with Fig. 5. The filled 
circles in Fig. 7 represent their average values organized on 
the basis of grids of size A(?) 7 “‘=0.05. In spite of the 
large scatter observed in short runs, a smooth linear de- 
pendence of D, on l/R, follows upon consideration of 
simulation durations >1O5 steps, as shown in the figure. 
The best fitting line is drawn. It is noted that here the 
variations in radius of gyration do not arise from any 
change in chain length, but from the change in the envi- 
ronment for a fixed chain length. Yet, the translational 
diffusion coefficient exhibits a linear dependence on the 
radius of gyration in conformity with the implications of 
Zimm’s theory44P45 of chain dynamics. 

The ratio (?)/(?) of the mean-square dimensions of 
the chains of 30 beads is found to be 6.5 =!=0.7 in the present 
MD simulations. This follows from the slope of the two 
lines drawn in Fig. 8, in which the results from several runs 
with various &bS are plotted. The least square fit to the data 
yields the line with slope 7.2. If the line is constrained to 
pass through the origin, on the other hand, the best fit 
leads to a value of 5.8. This result is in agreement with the 
expression (3)/(g) =6N,J(iV,+ 1) for freely jointed 
chains of Nb units. The slightly larger value presently ob- 
tained may be attributed to the the finite persistence length 
of the present relatively short chains and the excluded vol- 
ume effect, which is not included in the freely jointed chain 
model but is implicitly present in the simulation method. It 
is noted that a wide range of MD values is reported in 
literature for the ratio (?)/(?) of short bead-spring 
model chains. These deviations may be understood in view 
of the large amplitude scatter observed here in independent 
MD runs of short duration. As a final remark, we note that 

FIG. 8. Dependence of the mean-square end-to-end separation (2) on 
the radius of gyration (2). Circles represent time averages from indepen- 
dent runs of lo4 steps evaluated irrespective of solvent-polymer interac- 
tion. The best fitting line through the data points yields a slope equal to 
7.2. The second line represents the best fit for the line constrained to cross 
the origin and leads to (?)/(&=5.8, in agreement with the freely 
jointed chain model. 

the systems presently studied represent good solvent con- 
ditions, as demonstrated by the expansion coefficients 
cx > 1, listed in Table III. 

It has been recently pointed outI that in standard MD 
simulations of finite-size systems subject to periodic bound- 
ary conditions, inasmuch as the infinite dilution hypothesis 
does not strictly hold, an effective hydrodynamic radius 
Rh, incorporating the interaction between the chain and all 
its images, need be computed for a correct comparison of 
the results with the Kirkwood theory. A practical ap- 
proach to circumvent such periodic boundary artifacts in 
finite-size systems is asserted to perform the MD simula- 
tions at constant R$L ratios, when comparing the ditfu- 
sivity of chains of various length.17 This approach has re- 
cently proven useful for verifying the scaling law D-N;” 
or D-R,‘.18 In view of these arguments, the influence of 
the finite-system-size effect on the presently obtained MD 
results might be questioned. In the present case, although 
the chain length is kept fixed, the radius of gyration 
changes depending on solvent quality. All simulations be- 
ing carried out in the same simulation box of size Ls F ( L/ 
@)3 =9.03 accommodating an ensemble of 738 solvent 
molecules, an implicit increase in the ratio Rg/L is imple- 
mented with increasing &bS. Here the ratio RJL is found 
to increase from 0.13 to 0.29, as &bS varies from 0.1 to 0.8 
kcal/mol. This increase may be partly responsible for the 
observed decrease of D with increasing &bS. Likewise, the 
observed linear dependence of D on RF ’ in Fig. 7 might be 
biased with the same size effect, although these results are 
in satisfactory agreement with the predictions of the Zimm 
theory. As an inspection of this effect, simulations have 
been repeated with different box sizes, keeping on the other 
hand the density of the system fixed at pr= 1.054. As an 
illustrative example, let us consider the reference value of 
RJL=0.21 corresponding to the case &+,,=0.4 kcal/mol 
=0.4&*. Now, if one is interested in performing the simu- 
lations at fixed Rg/L and pr, this implies a choice of 
L=6.7 and N,=p,L;-N,=294 for the case &bS=0.12&*, 
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for example.46 Performing the simulations for &bs=O. 126 
with those parameters, yields the result displayed by the 
empty triangles at 0,=3.34X 10e3 in Figs. 5 and 7. A 
weak decrease in D, almost ranging within statistical error 
limits of Green-Kubo integration method, is observable. 
The close agreement with the original results, which were 
obtained with different Rg/L ratios, indicates that the size 
effect is practically inconsequential in the investigated 
R$L range and chain length. A further check will be to 
perform the SimUhtiOnS for the opposite case, say &bs 
=0.56&* adopting now a cubic box of edge L,= 11.2, and 
N,= 1470, and control whether the p6lymer in a larger 
simulation box enjoys higher mobility. ‘The result is shown 
by the empty triangles located at D,=2.28 X 10V3 in Figs. 
5 and 7. Only a slight tendency for increased mobility in 
larger box is discernible in this latter simulation, which 
again supports the idea that the size effect is of secondary 
importance in the present simulation data. It could be de- 
sirable to check the extreme case of &bs=0.8E*, as well. 
However, this task is not undertaken in view of (i) the 
high computational cost and/or less precise data collected 
within reasonable CPU time in this case, and (ii) the fact 
that the results obtained for &bs=0.12 and 0.56 kcal/mol 
do not invoke a further search in that direction. 

5. Orien tational autocorrela tions of chain segments 

For a given vector m in motion, the normalized orien- 
tational autocorrelation function C(t) is defined as 

at> = [Act) --MC co > l/[WO) --M( co 1 I, (12) 

where M(t)=(m(O) am(t)) refers to the ensemble aver- 
age over all configurational transitions. C(t) reduces to 
M(t), provided that m has unit magnitude. This follows 
from the identities M(0) = 1 and M( 00 ) =0, for the ori- 
entational motion of the unit vector. The time average 
C(t) = (m( to) . m( to+ t) ) has been evaluated here on the 
basis of an ensemble of snapshots at various starting times 
to as already mentioned for the mass center velocity corre- 
lation function. 

The influence of solvent-polymer interaction on local 
motion of the chain may be surveyed from the comparative 
analysis of the orientational autocorrelation functions ob- 
tained for bond vectors under various &bs . Figure 9 displays 
the time decay of the bond autocorrelations obtained from 
MD runs of duration T=2 X lo5 At, for each of the cases 
&bS=0.2, 0.4, and 0.6, using the simulation parameters of 
Table I. A significant change in local orientational mobility 
is observed, the motion becoming slower in the environ- 
ment with larger &bs, as is conceivable in a system subject 
to stronger polymer-solvent attractive interactions. Figure 
10 displays the time decays for a series of unit vectors m 
along the end-to-end separation of segments of n bonds, for 
l<n<l2. &bs is taken as 0.2 kcal/mol, and the parameters 
listed in Table I are used. The autocorrelation functions 
displayed in Fig. 10 represent the averages over all internal 
chain segments, excluding the terminal four atoms at both 
ends of the chain, in order to eliminate the bias arising 
from end effects. 
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FIG. 9. Influence of solvent-polymer interaction on the orientational 
relaxation of bond vectors. The time decays of (m (0) . m (t)) of unit 
vectors along backbone bonds are shown for .Q~*=0.2, 0.4, and 0.6, 
indicating faster relaxation with decreasing E,,~, i.e., with weaker inter- 
molecular associations. 

Figure 10 shows that relaxation rates depend strongly 
on the size of the chain segment, being faster in the case of 
more localized motions, i.e., shorter segments, as expected. 
The slowest relaxation process would occur in the case of 
n =Nb- 1. (The latter is not shown in the figure since it 
decays to about 0.8 only, within the time scale of the figure, 
and is subject to relatively large fluctuations.) On the other 
hand, from the comparison of the abscissa in Figs. 4 and 
10, we note that the decay of the orientational autocorre- 
lation functions involves time scales which are about 2 
orders of magnitude larger than those of the mass center 
velocity. This feature might appear confusing at first sight, 
in view of the fact that the mass center diffusion, which is 
representative of the motion of the chain as a whole, is 
certainly slower than the orientational relaxation of 
smaller size chain segments. But although the mass center 
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FIG. 10. Time decay of orientational correlation functions 
(m (0) . m (t)) for unit vectors along the end-to-end separation of chain 
segments of n bonds, for n= 1, 2, 3, 5, 8, and 12, as indicated. Curves are 
obtained from MD simulations of duration 2.0 X lOsAt using the param- 
eters of Table I with ~,,~=0.2 kcal/mol. Ensemble averages over the (Nb 
- n - 6) internal segments excluding four units at both ends of the chain 
are considered in each case. The error bars in the cases of highest noise 
are shown. 
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diffusion is in fact slower, this does not imply that the 
velocity autocorrelation curves displayed in Fig. 4 should 
also be decaying slowly. On the contrary, a faster decay of 
the velocity autocorrelation functions indicates a slower 
diffusion process. This is the basis of the-Green-Kubo for- 
mula, which yields a lower D value when the integration 
area below the decay curve is smaller, or vice versa. Phys- 
ically, a relatively fast decay of the velocity autocorrelation 
function means, in fact, a rapid loss of orientation in space, 
or a lack of persistence of motion along a given direction, 
leading to a small overall mean-square displacement, i.e., 
low diffusivity. Also, we note that the relative time scales 
of the two Figs. 4 and 10 are in conformity with previous 
MD simulations using comparable density and tempera- 
ture conditions. l3 

Simulations of 2X lo5 time steps ( - 1 ns) were per- 
formed to obtain the decay curves of Fig. 10. Yet, the 
curves from independent runs exhibit considerable fluctu- 
ations, increasing with time and segment size. The statis- 
tical error due to finite time averaging in computer exper- 
iments has been analyzed by Zwanzig and Ailawadi.g’47 
Accordingly, the MD results for a given normalized cor- 
relation function C(t) differ from the exact value R(t) by 
the equation R(t) = C( t) f (27/T) “*[l -C(t)], where T 
is the total duration of simulation and r is the relaxation 
time associated with the particular correlation function. 
Thus the statistical error is proportional to T-l’* in gen- 
eral, and increases from 0 at t=O to (27/T) I’* at long 
times. On the basis of the characteristic times r of the 
orientational relaxation of segments of various size, which 
will be considered in the next paragraph, the highest sta- 
tistical errors in Fig. 10 are estimated to be R(t) -C(t) 
=0.140*0.004 for n>8 at t=6000At, and decreases to 
0.08 1 f 0.002 at t= 3OOOAt. It is pointed out, however, that 
the error is reduced by a factor of N”2 when an average 
over N identical, separate particles/functions is possi- 
ble.g,47 Although the precision introduced by this approach 
depends upon the range of correlations in the chain, the 
extra averaging over several internal chain segments of a 
given length, as presently performed, reduces further the 
statistical noise of the correlation functions. For example, 
the statistical errors at t=60OOAt decrease to 0.039 and 
0.043 for n=8 and 12, respectively, when the extra aver- 
aging over (iVb-- n -6) internal segments of the chain is 
performed. These statistical uncertainties are indicated by 
the error bars in Fig. 10. 

The dependence of the rate of orientational relaxation 
on the size of chain segments involved in local motions has 
been a subject of interest in previous studies. A correlation 
time r may be assigned to each size segment either from 
the integral of the above time decay curves or from the 
inverse of their initial slope.48,4g The second approach is 
presently undertaken, inasmuch as the correlation function 
for large n becomes statistically unreliable at long times. 
The resulting correlation times are plotted in Fig. 11 for 
n < 8 and ~~~‘0.1, 0.3, 0.5, 0.6, and 0.8 kcal/mol. An al- 
most linear dependence between r and n is observed in the 
logarithmic plot of Fig. 11, supporting the presence of a 
power law of the form r-n a between the size and the ori- 
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FIG. 11. Dependence of orientational correlation times -r on,the size of 
the chain segment involved in local motion. log(~/s) is plotted against 
log n where n is the number of bonds in the segment. A power law of the 
form 7-n’ is observable, with the exponent decreasing from 1.46 for 
E,,=O.SE* to 1.00 for ~~~ = O.le*, as follows from best fitting straight lines. 

entational relaxation time of short chain segments in a given 
environment. For sbs=O.l kcal/mol, the best fitting line 
indicates an exponent of a = 1 .OO for the variation r-n’. 
The exponent increases with increasing quality of the sol- 
vent and equates to 1.46 for .sbs=0.8 kcal/mol. 

In Rouse dynamics, the relaxation times scale as n*, 
whereas the Zimm theory yields an exponent of 3~ in the 
presence of hydrodynamic interactions, Y assuming the val- 
ues 0.5 and 0.6 in theta and good solvents, respectively. 
The Rouse-Zimm model is developed for long chains con- 
sisting of several Gaussian subchains, and gives a good 
description of low frequency motions in polymers. In the 
so-called sub-Rouse regime, on the other hand, which in- 
volves small wavelength or intermediate frequency range 
motions, a weaker dependence on the size of the moving 
unit is predicted.5s52 Both analytica15* and numerica15’ 
analysis of the dispersion of normal relaxational modes ‘for 
a segment of n = 16 coupled bonds indicate that, except for 
a few slowest modes, a plateau value is approached for the 
frequency of all relaxational modes, and an almost linear 
dependence of terminal mode relaxation rate on n is ob- 
served up to n = 150. This weaker dependence of relaxation 
rate on the size of the kinetic unit, compared to classical 
Rouse-Zimm model, has been thoroughly discussed in pre- 
vious work.52 Arguments on the reduced mobility of short 
constrained chain segments associated with their smaller 
number of degrees of freedom, go back to the original work 
of Kuhn.30’53 The present simulations lend support to those 
arguments. The exponent a lies below the Rous+Zimm 
values, in general. Furthermore, the present simulations 
indicate that the exponent, not only assumes lower values 
in high frequency regime, but also changes depending on 
the quality of the solvent. Interestingly enough, the lowest 
exponent is observed here in the case of the most compact 
chains (i.e., for cbs=O.l kcal/mol), which is intrinsically 
subject to strongest intramolecular constraints. In analogy 
with the increase of the Zimm exponent from 1.5 to 1.8 
with solvent quality, the exponent a shows a systematic 
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increase as the chain assumes more expanded configura- 
tions. 

IV. CONCLUDING REMARKS 

The present MD study invites to attention the influ- 
ence of the strength of polymer-solvent interactions on the 
equilibrium and dynamic properties polymers in dilute so- 
lution. Two major effects of solvent quality are observable. 
First, chain properties are affected on a local scale, i.e., at 
the level of individual chain units and segments. The 
changes in pair radial distribution functions illustrated in 
Figs. 1 and 2, as well as the changes in the bond stretching 
and orientational mobility displayed in Figs. 3 and 9, re- 
spectively, provide firm evidence of the perturbation of 
chain properties on a local scale. Second, an impact on the 
chain overall statistics and dynamics is observable. The 
smooth linear decrease in the translational diffusion coef- 
ficient with increasing solvent-polymer attractions, dis- 
played in Fig. 5, is a clear indication of this effect. This 
figure is considered as a significant result, exhibiting the net 
effect of solvent quality on chain diffusivity. 

The slower relaxation process occurring in media fa- 
voring intermolecular interactions is attributed to the over- 
all expansion in chain dimensions, as verified in Fig. 7 by 
the approximately linear dependence of D on the recipro- 
cal of the radius of gyration, irrespective of &bs. Inasmuch 
as the decrease in the relative size of the simulation box 
might induce a lower mobility due to the enhanced hydro- 
dynamic interactions between the chain and its image, the 
validity and limitations of our results have been inquired 
by carrying out repetitive simulations for different RJL 
ratios. Within the range 0.15<R,/L<0.25 investigated, un- 
der good solvent conditions, as imparted by the particular 
set of simulation parameters, the observed change in diffu- 
sivity was only marginal, indicating that the observed be- 
havior was justifiable irrespective of the size of the simula- 
tion box. Besides, reducing or enlarging the box size would 
intrinsically induce an increase or decrease in the concen- 
tration of the solution, which is incompatible with the hy- 
pothesis of a fixed-concentration solution. More specifi- 
cally, if the increase in R, arises from a favorable polymer- 
solvent interaction as in the present case, and not the 
adoption of a different chain length, this increase should 
not be suspended by adopting a larger simulation box for 
the sake of preserving the ratio R$L fixed, but on the 
contrary the resulting enhancement in interchain hydrody- 
namic interactions should be considered as an indirect ef- 
fect of the solvent. 

The autocorrelation decay functions for internal chain 
segments of n bonds displayed in Fig. 10 are subject to 
statistical uncertainties increasing with n and t as indicated 
by the error bars. However, the results for n<7 exhibit 
substantially lower noise, and the corresponding character- 
istic times presented in Fig. 11 may be considered as sta- 
tistically reliable estimates of the dependence of relaxation 
time on segment size. In this respect, it is interesting to find 
out that a power law of the form r-n’ applies to local 
motions, the exponent therein increasing with solvent qual- 
ity in the range 1.0 <a < 1.5. An inverse’linear relationship 

between the terminal mode relaxation frequency and the 
number of bonds cooperatively participating in this local- 
ized mode was also pointed out in previous work,50-52 con- 
trasting the Rouse-Zimm behavior of long Gaussian sub- 
chains. Yet, the establishment of these results awaits 
further experimental and theoretical support. 

Approaches considering the structural characteristics 
of the chain such as the rotational isomeric state model’ 
have proven to be valuable for the understanding of chain 
configurational statistics. To include the influence of sol- 
vent as a perturbation has been common practice. Like- 
wise, local chain stochastics has been analyzed with the aid 
of molecular approaches based on discrete rotameric states 
accessible to single chain, using the fundamental assump- 
tions and implications of the RIS approach.54 Although the 
present approach invites attention to the role and impor- 
tance of the interaction of polymer chains with the sur- 
roundings, it would be desirable to inspect the validity of 
the same effect in chains subject to real intramolecular 
conformational potentials. This would lead to an under- 
standing of the relative importance of solvent in systems in 
which the chain intramolecular constraints are predomi- 
nantly operative, in contrast to the bead-spring model 
chains which are devoid of any structural and conforma- 
tional constraints other than chain connectivity. 
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