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ABSTRACT: Theoretical and experimental evidence for the occurrence of multiple relaxation regimes in 
polymers far above the glass transition temperature is presented and interpreted in terms of the Kohlrausch- 
Williams-Watts (KWW) stretched exponential expression. Intramolecular effects responsible for the 
observation of stretched exponential decay of correlation functions are discussed in relation to four different 
theoretical models: The kinetic Ising model of Glauber, the Shore-Zwanzig model of linear fluctuating 
dipoles, the Hall-Helfand model of bistable oscillators, and the dynamic rotational isomeric state model. A 
decrease in the KWW exponent is predicted with increasing intramolecular coupling. Chain connectivity 
appears as a major factor underlying the stretched exponential behavior observed in an intermediate time 
regime covering a time span of 2-3 orders of magnitude. In the short time limit, a single exponential decay 
of correlations is approached in all models. At long times, on the other hand, different KWW exponents are 
observed depending on the degree of intramolecular cooperativity. Results of depolarized Rayleigh scattering 
measurements by Tandem Fabry-Perot interferometry on poly(methylphenylsi1oxane) at high temperatures 
are observed to be insensitive to variations in temperature and concentration, which lends support to the 
notion that intramolecular interactions play a fundamental role in ascribing the apparent KWW behavior. 

Introduction 
Dielectric relaxation, quasielastic light scattering, and 

viscoelastic measurements of local segmental dynamics in 
bulkpolymers14 indicate that the time decay of correlation 
functions C ( t )  conforms, to  a good approximation, with 
the empirical Kohlrausch-Williams-Watts (KWW) 
stretched exponential expression5 

C ( t )  = exp[-(t/7)@1 (1) 

Here 7 is the characteristic correlation time associated 
with C( t ) .  The exponent p is viewed as a measure of 
cooperativity, decreasing from 1, in the case of independent 
units, to lower values, in the presence of coupling between 
relaxing units. Experiments yield a value of varying 
between 0.3 ar'd 0.45 for amorphous polymers above the 
glass transition temperature. 

The correlation function C ( t )  is expressed as the 
ensemble average 

C ( t )  = ( X ( t ) X ( O ) )  (3 
where X ( 0 )  is, in general, the dynamic or stochastic variable 
a t  time t = 0, which assumes the value X ( t )  a t  time t .  The 
averaging is carried out over all possible conformations of 
the dynamic variable at times zero and t. In dielectric 
spectroscopy, for example, X ( t )  is the dipole moment while 
in depolarized Rayleigh scattering, X ( t )  is a suitable 
component of the anisotropic polarizability tensor. 

Both intermolecular and intramolecular correlations 
might be responsible for the experimentally observed 
stretched exponential behavior. Evidence for the effect 
of intermolecular correlations is provided by depolarized 
dynamic light scattering studies on molecular glass formers 
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such as o-terphenylyl and dioctyl phthalate near and above 
the glass transition temperature Tr6s7 The time decay of 
the scattering function for these materials obeys the KWW 
form with P less than unity,'-1° in agreement with results 
from dielectric relaxation measurements.l' At tempera- 
tures far above Tg ( T >  Tg + 80 K) at  which fast orientation 
processes take place, the experimentally obtained orienta- 
tion correlation function becomes indistinguishable from 
a single Debye ( p  = 1) relaxation, and the temperature 
dependence of T conforms to an Arrhenius equation. For 
macromolecular glass formers, on the other hand, C(t )  
measured by dielectric s p e c t r o ~ c o p y ~ ~ ~  (DS) and depolar- 
ized Rayleigh spectroscopy12 (DRS) far above Tg appears 
to retain its nonexponential shape which is observed near 
Tr Apparently, this different behavior between molecular 
and polymeric viscoelastic liquids well above Tg is due to 
the intramolecular contributions to C ( t )  of the latter class 
of materials, because a t  these temperatures free volume 
and hence intermolecular effects loose their importance. 
Experimental evidence of intramolecular effects on C ( t )  
also originates from time resolved optical spectroscopic 
measurements of labeled polyisoprene solutions13 and 
recent DRS spectra of a poly(phenylmethylsi1oxane) and 
(PMPS)/CCld solution with 80 wt 5% PMPS. 

Among various factors affecting chain dynamics, the 
essential physical feature which needs to be recognized, 
and in fact forms the basis of most of mathematically 
tractable models, is the chain connectivity. Interdepen- 
dence between bonded units, from the point of view of 
both spatial and conformational energetic requirements, 
is intrinsically present in polymer chains. It might be 
interesting to verify whether a stretched exponential 
behavior is compatible with simple models in which all 
chain characteristics other than chain connectivity are 
ignored. One-dimensional models, devoid of any chemical 
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and structural constraints, might be a good starting point 
for exploring the intrinsic role of chain connectivity, if 
any, on the observed stretched exponential behavior. 
Models including the three-dimensional structural and 
conformational characteristics of real chains might be 
explored, as a next step, for an assessment of the influence 
of specific intramolecular interactions on chain dynamics. 
This type of analysis would provide information on the 
contribution of single chain properties on the time decay 
of correlation functions. The understanding of the role 
of intermolecular effects, on the other hand, necessitates 
the consideration of environmental constraints on chain 
dynamics, as well as the coupling between external and 
internal modes of relaxation, and will not be taken up 
here. 
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Models and Calculations 

The division of the relaxation function into separate 
regimes along the time axis is indeed predicted by several 
models of the isolated chain with intramolecular correla- 
tions. In the present work, the predictions of four such 
models will be discussed. These models are (i) the one- 
dimensional model of Shore and Zwanzig for perpendicular- 
dipole polymers,14 (ii) the kinetic Ising model of Glauber,15 
(iii) the one-dimensional model chain with bistable bond 
potentials developed by Hall and Helfand,16 and (iv) the 
dynamic rotational isomeric state model of Bahar et al.17 
These models differ in their physical and mathematical 
approaches, as will be described below. Yet, they have 
the following common features: Except for the model of 
Shore and Zwanzig in which dipolar spins interact with 
external fields, they are based on the behavior of isolated 
single chains, and chain units therein are assigned discrete 
isomeric states. Transitions between these discrete states 
constitute the basic mechanism of relaxation. A master 
equation formalism is adopted for the description of 
conformational stochastics in models ii-iv. In model i, on 
the other hand, the time evolution of the distribution 
functions is governed by the rotational diffusion equation. 
Interdependence of bonds along the chain is limited to 
nearest neighbors, only, in all cases. Thus, these may be 
identified as Markov chains, in the sense that the dynamic 
behavior of a given unit depends on the state of its first 
neighbor along the chain and is not affected by any 
topological neighbors or by any long-range interactions, 
other than chain connectivity. Intramolecular correla- 
tions, though restricted to first neighbors along the chain, 
are incorporated at different levels of approximation, in 
these models. Models i-iii are one-dimensional and yet, 
capture the essential features of local dynamics. Model 
iv incorporates the three-dimensional structural charac- 
teristics of real chains, by following the rotational isomeric 
state approximation of chain statistics. A brief description 
of these models will be given below, and the correlation 
functions obtained from each model will be evaluated and 
discussed in relation to the KWW expression. 

(i) One-Dimensional Model of Perpendicular- 
Dipole P01ymers.l~ This model describes the small 
amplitude oscillations of dipoles g along a linear chain. 
The dipoles are represented by spins perpendicular to the 
chain axis, undergoing harmonic interactions with each 
other and a cosine interaction with the external electric 
field E. The time-dependent behavior of the N dipoles 
along the chain is described by the autocorrelation function 
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Figure 1. KWW plots of the correlation functions predicted by 
(i) the ShoreZwanzig model, (ii) the Glauber model with various 
coupling parameters y as indicated in the middle three curves, 
and (iii) the DRIS model, indicating all the occurrences of the 
three distinct relaxation regimes. 

M ( t )  of the electric moment14 

Here, k g  is the Boltzmann constant, Tis the temperature, 
D is the rotational diffusion coefficient for the dipoles, J 
is the coupling constant between the neighboring dipoles, 
and IO is the zeroth order modified Bessel function. The 
quantity e-I Io(T) is pointed to appear as a general 
attribute of one-dimensional stochastic problems with 
nearest-neighbor interactions, as previously demonstrated 
by Oppenheim, Shuler, and Weiss for random walks of 
small particles on discrete, one-dimensional, infinite 
lattices.18 Thus, the diffusion of the orientation of a dipole 
along the chain, through the mechanism of orientation 
exchange with its nearest neighbors, is represented by the 
modified Bessel functions. The normalized decay function 
C ( t )  M(t)/M(O) resultingfrom eq 3 may be approximated 
by three simple functions for the short, intermediate, and 
long time ranges as 

for JDt/kgT << 1 
exp[-(Dtk~T/TJ)”~] for 1 << JDt/kBT << @ (4) rt e-Dt/N f o r p  << JDt/k,T 

When represented in terms of the stretched exponential 
form of eq 1, these three expressions yield exponents P 
equal to 1, l /2 ,  and 1 for short-, intermediate-, and long- 
time relaxations, respectively. This behavior is illustrated 
by the dashed lines in Figure 1, drawn for arbitrary values 
of the parameters of eq 4. 

The following qualitative interpretati~n’~ of eq 4 is given: 
For short times, the orientation of the dipoles decays 
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Table 1. Best Fitting KWW Parameters for Correlation 
Function of the Kinetic Ising Model 

B 7 

y short intermediate long short intermediate long 

without interacting with neighbors, resulting in a single 
exponential decay with time constant 1/D. At  intermedi- 
ate times, intrachain harmonic coupling between nearest 
dipoles results in a cooperative relaxation, and a nonex- 
ponential decay function is obtained. At  long times, the 
intramolecular vibrations are equilibrated and the com- 
bined motion of all spins, which is slowed down by a factor 
of N compared to that of a single free spin, is observed. 

I t  is to be noted that the Shore-Zwanzig model is 
analytically soluble only because the dipoles interact 
parabolically. A more recent model introduced by Cook 
and Helfand considers instead the nearest-neighbor 
interaction potential with r stable states circularly dis- 
tributed.lg This is a more realistic model for simulating 
rotameric transitions in real polymer chains. However, 
the conformational correlation functions resulting from 
this model obey a single exponential time decay cor- 
responding to the long-time behavior of the Shore-Zwanzig 
model. 

(ii) Kinetic Ising Model of G 1 a ~ b e r . l ~  This model 
is based on the assumption that the spins of a linear array 
of N individual particles are stochastic functions of time 
a,( t )  (i = 1, ..., N )  and take on values of either +1 or -1. 
Random transitions between these two states result from 
the interaction of the spins with an external agency. The 
presence of the external agency is implicitly assumed, but 
the mechanism through which it affects the chain is not 
relevant to the formulation. Intramolecular correlations 
are introduced by choosing the transition probabilities 
for any one spin to depend on the state of the first 
neighboring spins. 

The master equation governing the time evolution of 
the system is given by the expression 

Here, p ( q ,  .*., a ~ t )  is the probability of having state a1 for 
the first spin, ..., U,V for the Nth spin at  time t .  wi(ai) is 
the rate of transition of the ith spin form +ai to -ai while 
the others remain fixed. The first summation on the right- 
hand side of eq 8 gives the rate of disappearance of the 
conformation (a1, ..., ON); the second term accounts for the 
creation of this state by the transition of each spin i from 
the state -ai to +ai. Equation 5, written for each of the 
2N accessible configurations of the spins, may be conve- 
niently organized in matrix notation as dpldt = Ap(t), 
where p(t) denotes the array of the probabilities of the 2N 
states and A is referred to as the transition rate matrix. 

The coupling between first neighbors is introduced by 
choosing the transition rates wi(aJ to be of the form (1/ 
2 ) 4 1  - (1/2)ya;(oi-l 4- ai+l)] which becomes equal to a/2 
if the neighboring spins are antiparallel, a(1 - y)/2 if the 
ith spin is parallel to both of its neighbors, and a(1 + y)/2 
if it is antiparallel. Thus, the parameter y is a measure 
of the tendency of the spins to align parallel to each other. 
Parallel alignments of neighboring spins are favored by 
positive values of y, and opposite alignments by negative 
values. The degree of coupling between neighboring spins 
increases as Iyl approaches unity, which is its maximum 
allowable value. y is related to the energy of alignment, 
J ,  as y = tanh(2JIk~T).  

The spin correlation function C(t) h ! f i k ( t )  between the 
ith and kth spins is obtained15 for a system in thermal 

0.100 0.988 1.01 
0.900 0.96 0.73 0.85 2.68 4.28 5.64 
0.990 0.98 0.60 0.73 8.33 43.0 41.3 
0.999 0.94 0.56 0.58 34.0 462.0 395.4 

equilibrium at  temperature T, as 

Here, Z, is the modified Bessel function of order m. 
Autocorrelation decay functions calculated using eq 6 for 
three different values of the intramolecular coupling 
parameter y are presented in Figure 1. For each value of 
y, eq 6 is evaluated at  closely spaced times and the points 
obtained in this manner are joined by least squares straight 
lines. For values of y approaching unity, the curves are 
best fitted by three consecutive straight lines, each yielding 
the exponents and correlation times listed in Table 1. At 
low y values, the three regimes are not distinguishable, 
and a Debye behavior is observed. The vertical lines in 
the figure separate the regions with different slopes. 
Inasmuch as the KWW exponent B gives an indication of 
the mechanism of relaxation in different time regimes, we 
may infer from the tabulated data that the initial relaxation 
process is relatively little affected by intramolecular 
correlations, 0 values remaining in the vicinity of unity at 
short times. The intermediate times, on the contrary, are 
strongly affected by the degree of intrachain coupling, 
and fl  seems to approach 0.5, the value predicted by the 
Shore-Zwanzig theory, as the interdependence between 
nearest neighbors is sufficiently strong. The terminal 
region exhibits slightly larger 0 values, gradually merging 
to the intermediate region behavior with increasing y. 

In the absence of correlations between spins in the initial 
state, the conformational autocorrelation function M ( t )  
for a single spin reduces to 

which readily follows from eq 6,  by taking i = k and m = 
0. Here, the product e4yt lo(ayt)  represents the prob- 
ability for a given spin to remain in its initial state a t  time 
t .  

(iii) Hall-Helfand Model Chain of Bistable Bonds.16 
This model has been successful in describing experimental 
data on local relaxation. I t  is a one-dimensional chain 
whose bonds may be in either of two states, short (8) and 
long (1). The state of a given bond k is conveniently 
denoted by Uk7 assuming the values of +1 or -1, depending 
on the state, s or 1, of that bond. Accordingly, 2N 
configurations, denoted as {u)i = {ul, ..., uk, ..., uN)i, 1 I i 
5 2N, are accessible to a chain of N bonds, and transitions 
between those states are governed by a master equation, 
of the same form as eq 5. Only single step transitions are 
possible according to the model, those occurring between 
configurations differing by (i) the state of a single bond 
or (ii) the states of two adjacent bonds which are themselves 
of opposite states. These two types of transitions are 
schematically shown as s - 1 and sl -ls, respectively. The 
former is referred to as an isolated transition and involves 
a relatively slow relaxation rate X, inasmuch as it entails 
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Figure 2. KWW plots of the conformational correlation func- 
tions predicted from the Hall-Helfand model for various values 
of the ratio & / X I  indicated on the figure. The correlation 
functions are approximated by three consecutive stretched 
exponentials, with respective exponents listed in Table 2. 

Table 2. Best Fitting KWW Parameters for the 
Hall-Helfand Correlation Function 

a 
xolh short intermediate long 
1.00 0.954 0.850 0.949 
0.50 0.937 0.756 0.904 
0.10 0.912 0.497 0.674 
0.01 0.903 0.325 0.289 
0.00 0.850 0.274 0.174 

the displacement of the tails and thus requires a large- 
scale spatial reorganization of the chain. The second 
involves two compensating transitions localizing the 
motion and, hence, is referred to as a correlated transition; 
its rate A1 is higher than Ao. The conformational auto- 
correlation function for the state of a given bond is obtained 
by the use of Pauli spin operators ad6 

This form suggests that A1 governs the rate of diffusion 
or propagation of conformational motion along the chain, 
whereas XO is responsible for the loss of conformational 
states. It is interesting to note that eq 7 reduces to eq 6 
with the following assignment of parameters: 

X l  

Xo + A, 
(Y = 2(A, + A,) y = - (8) 

Results obtained with eq 7 are shown in Figure 2 for various 
values of the ratio Xo/A1. This ratio may be envisaged as 
a measure of cooperativity, decreasing with the extent of 
cooperative transitions. The limiting value of XO/X1 = 0 
corresponds to the extreme case where all conformational 
passages occur in the form of correlated transitions. The 
curves are suitably approximated by three consecutive 
stretched exponentials, with respective exponents listed 
in Table 2. In parallel with the results obtained by the 
Glauber model, an approximately single exponential 
behavior is observed a t  short times, followed by a stretched 
exponential time decay at  intermediate times. At long 

times, the exponent decreases with decreasing &/AI. The 
three regimes, displayed by the dashed, solid, and dotted 
lines in the figure, are particularly distinct in the cases 
Ao/A1 = 0.1 and 0.5, whereas for Ao/A l  = 1 the exponents 
in the different regimes are hardly distinguishable. 

(iv) Dynamic Rotational Isomeric State (DRIS) 
M0de1.17-~&23 The three-dimensional structural and con- 
formational characteristics of real chains and nearest- 
neighbor interactions along the chain are rigorously 
considered in this model. Here, the torsional rotations 4i 
of internal bonds, with indices 1 I i I N ,  are the only 
structural parameters defining a given chain configuration. 
Discrete values corresponding to rotational isomeric 
minima are adopted for torsional angles and fluctuations 
about the energy wells are neglected. For the case of Y 
rotameric states accessible to each bond, a total of fl 
configurations (a), is accessible. {a), is given by a sequence 
of dihedral angles {$I, 42, ..., 4~-1, @Njm, corresponding to 
the torsional states of the bonds, with 1 I m I VN. A 
master equation formalism, like models ii and iii, is adopted 
for describing the stochastics of configurational transitions 
between the flconfigurations. The solution of the master 
equation leads to correlation functions of the formz1 

Here A, is the mth eigenrate of the transition rate matrix 
A of the DRIS model and k, is the amplitude factor which 
is a function of the eigenvectors, the configurational 
property under consideration, and the chain equilibrium 
statistics. According to eq 9, a distribution of relaxational 
modes, with frequencies equal to -A,,,, 1 I m 5 fl, 
contributes additively to C(t). 

The degree of correlation between the initial and final 
rotational states of a given bond i may be investigated by 
considering the product {4i)m{$i)n where (&)m denotes the 
state of the ith bond in the mth configuration of the chain. 
Using the DRIS formalism, the conformational autocor- 
relation function Mii(t) has been calculated for polyeth- 
ylene bonds which are subject to the rotational states trans 
(t),gauche+ (g+), andgauche- (g). Details of calculations 
may be obtained from refs 17 and 20-23. Results are 
presented as the upper boldface curve in Figure 1. This 
curve is obtained by adopting the arbitrary value { r # ~ j ) ~  = 
1 fori = trans, and {4i)m = -(1/2)P(t)/P(g*) fori =gauche*, 
with the energy parameters for real polyethylene chains 
given in ref 24. The horizontal and the vertical positions 
of the curve in the figure are arbitrarily chosen. Three 
regions with respective slopes 0.98,0.66, and 0.78 emerge, 
in parallel with the conformational autocorrelations 
resulting from one-dimensional models. For independent 
bonds, a line with a single slope 6 = 1.00 is obtained for 
all time regimes, which verifies that a single exponential 
relaxation occurs in the absence of neighbor dependence. 

As a final remark, we note that the DRIS formalism has 
been recently applied to the relaxation of cis-polyisoprene 
in the bulk state, and the time decay of dielectric relaxation 
functions has been analyzed in terms of KWW represen- 
t a t i ~ n . ~  Short and intermediate regime behaviors with 
respective exponents of 0.96 and 0.62 were theoretically 
predicted when coupling along the chain was restricted to 
first neighbors only. Upon consideration of a cooperative 
relaxation mechanism involving larger size chain segments, 
the KWW exponent was found to decrease to -0.35, in 
good agreement with experiments. Yet, the theoretically 
predicted time range for intermediate regime behavior 
was narrower than that experimentally observed. Fluc- 
tuations of the environment were invoked for extending 
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Figure 3. Orientation time correlation function C(t )  = [ G ( t )  - 
111/2 of bulk poly(methylphenylsi1oxane) at 244.4 K. The 
depolarized intensity correlation function G ( t )  was recorded by 
a digital full ALV-5000 correlator. 

the KWW behavior to time intervals of about four decades, 
in conformity with e~periments .~ 

Experimental Evidence of Nonexponential 
Behavior Due to Intramolecular Contributions 

As previously mentioned, segmental orientation time 
correlation functions C( t )  (eq 2) can be conveniently 
measured by the DRS technique. For slow correlation 
times (T  > 10-6 s) near Tg, one can employ photon 
correlation spectroscopy (PCS) whereas for faster motions 
taking place far above Tg Fabry-Perot interferometry 
(FPI) can be utilized to record the spectrum Iw(w). The 
latter is the Fourier transform of C(t) .  In principle, C ( t )  
measured by DRS reflects collective orientation. I t  is 
known12 that intermolecular orientational correlations are 
weak in amorphous bulk homopolymers such as PMPS. 
On the other hand, the extent of intramolecular correla- 
tions is not experimentally well established yet. Here, we 
present both PCS and FPI-DRS measurements on 
amorphous PMPS (M, = 5 X lo3) aiming mainly at  the 
shape of C ( t )  and its relation to intramolecular effects. 

Figure 3 shows an experimental C(t)  of PMPS measured 
by PCS at  244.4 K. The ordinate [G( t )  - 111/2 in the figure 
corresponds directly to C(t). In the case of the common 
KWW type relaxation, this time correlation function is 
described by the parameters T and @ and the amplitude. 
In the present case, however, a single KWW representation 
is not adequate and displays systematic deviations. In 
fact, a second slower relaxation process with @ = 1 should 
be included in the fitting procedure in order to adequately 
describe the experimental C(t) .  This virtually Debye slow 
relaxation mode with correlation times over 100 times 
longer than T could be associated with the slow decays of 
Figures 1 and 2 which reflect global chain orientational 
motions. The main relaxation process for PMPS in Figure 
3 exhibits a KWW exponent of @ = 0.44 f 0.02. 

The nonexponential decay of C ( t )  commonly observed 
near and above Tg has been ascribed to regions subject to 
cooperative rearrangements with lifetime T . ~ ~ * ~ ~  The size 
of these regions decreases with increasing temperature, 
thus accounting for the concomitant increase of @ in 
molecular glass formers.677 In fact, although molecular 
glass forming liquids show 0 < 1 at  low T near Tg, the 
exponent @ becomes indistinguishable from unity a t  T > 
Tg + 80 K.6v7327-29 It appears, however, that amorphous 
polymers do not conform with this s~heme.'~JO We have 
recorded the Z V H ( ~ )  spectra of PMPS at  high temperatures 
by using for the first time Tandem FPI in order to diminish 
the neighboring interferometric orders. At  T = 353 K,  
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Figure 4. (a) Depolarized Rayleigh spectrum Zw(w)  of bulk 
poly(methylphenylsi1oxane) at 353 K recorded by a tandem 
Fabry-Perot interferometer at a free spectral range of 10 GHz. 
The convolution of a single Lorentzian line with the instrumental 
function provides a poor representation of the experimental 
spectrum, as shown in the deviation plot (inset). (b) Fit of a 
continuous distribution of Lorentzian l i e  shapes convoluted with 
the instrumental function to the experimentallw(w) respectively 
denoted by the solid line and the squares. The obtained 
distribution p ( r )  is shown in the inset. 

about 120 deg above Tg, the experimentalIvH(w) displayed 
in Figure 4a cannot be adequately described by a single 
Lorentzian (@ = 1) line convoluted with the instrumental 
function, as is evident from the deviation plot (inset of 
Figure 4a). Instead, the transformation of Iw(w) spectra 
of Figure 4a to the time domain, and subsequent fit to a 
single KWW led to 0 = 0.50 f 0.10, which is close to the 
exponent observed at  244.4 K. It  should be pointed out 
that the differentiation between a double Lorentzian and 
a single KWW fit of IVH(W) is somewhat ambiguous, as 
described in detail in ref 30. In contrast, the PCS functions 
(Figure 3) are much more amenable to line shape studies. 
Indeed, the integrated intensities IVH are found to be 
insensitive to temperature variations between 290 and 343 
K for bulk PMPS. I t  is to be noted that for bulk 
polyisoprene and polybutadiene IVH was also observed to 
be a weak function of temperature (merely density effects) 
over the same range.30 

In parallel with the increase of temperature, dilution of 
PMPS by addition of 20 wt % CCL (optically isotropic 
solvent) has no measurable effect on IVH(O) other than 
reduction of the integrated intensities by also 20%. The 
insensitivity of the shape of IW(W) to temperature and 
concentration variations corroborates the notion that 
intramolecular effeds, rather than intermolecular, are the 
source of the observed behavior. Thus, as discussed in 
the previous section, intramolecular correlations play a 
significant role in the relaxation mechanism, at least at 
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high temperatures. 
The IVH(U) spectrum of Figure 4a has been analyzed by 

a continuous distribution p ( r )  of Lorentzians with relax- 
ation rate after convolution with the instrumental 
function. As described e l s e ~ h e r e , ~ ~ ~ ~ ~  the experimental 
spectra were represented by the superposition of Lorent- 
zians: 
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(iv) Experimental evidence for the role of intramolecular 
effects comes from the observation of the KWW behavior 
in diluted systems and/or a t  high temperatures well above 
the Tg in which intermolecular effects are negligibly small. 
Present PCS measurements and DRS results by a tandem 
Fabry-Perot interferometer on poly(methylphenylsi1ox- 
ane) lend support to the importance of intramolecular 
correlations. 

where p(r) is the relaxation rate distribution function. 
Figure 4b displays the spectrum IVH(U) of Figure 4a in a 
double logarithmic plot that emphasizes the wings Of IVH- 
(w) .  The solid line is the computed IVH(O) using the 
obtained p(r) shown in the inset of Figure 4b. The 
presence of the main broad peak in p(r) should have been 
expected from the failure of the single Lorentzian fit of 
Figure 4a which would lead to a 6(r) peak in p(r). An 
unexpected finding is the small peak in p(r) which 
nevertheless can account for the subtle change of the slope 
of log ZVH(W) vs log w at  high frequencies (Figure 4b). The 
main peak of p(r) is the continuation of the main relaxation 
of Figure 3 at  high temperatures. On the other hand, the 
present fast process in the nanosecond time scale is slower 
compared to the fast process in the picosecond time range 
recently observed by DRS7 and quasi-elastic neutron 
scattering. The analysis of the I w ( w )  spectrum for the 
80% PMPS/CCl4 system revealed a similar bimodal 
structure for p(r) where the second fast peak became faster 
than in that bulk PMPS. 

Concluding Remarks 
The following major conclusions may be drawn from 

the present study. 
(i) The cooperative relaxation phenomenon, which is 

the basis of stretched exponential behavior, does not 
necessarily originate from intermolecular correlations. 
Instead, in the present study, it is demonstrated that short- 
range intramolecular coupling might be as well responsible 
for the apparent nonexponential decay of correlation 
functions. 

(ii) Markov chain models in which bond interdependence 
is restricted to first neighbors only along the chain are 
capable of exhibiting KWW behavior in the intermediate 
time regime. 

(iii) In spite of the large number of differences between 
the models, conformational correlation functions obey 
same qualitative behavior. Irrespective of the details of 
the type and mechanism of relaxation processes, two 
common features in all three models seem mainly re- 
sponsible for these observations: the chain connectivity 
and the short-range intramolecular coupling. 
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