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ABSTRACT: Expressions for the molecular orientation of long and short chains in bimodal networks, SL 
and Ss, are derived based on the theory developed by Kloczkowski et al. (Macromolecules 1991,24,3266) 
for regular bimodal phantom networks and compared with those (SL' and SS") occurring in corresponding 
unimodal networks. The changes in segmental orientation of the respective chains in bimodal networks 
relative to their unimodal counterparts, expressed as the ratio sr/S~" or SS/Sso, are shown to  be 
independent of macroscopic strain and intrinsic chain configurational characteristics but depend essentially 
on network topology and composition. The latter are accounted for by two variables: the ratio 6 of the 
molecular weights of short chains to that of long chains, and the number 9s and h of short and long 
chains at each junction. Results of the formulation show that the long (short) chains in the bimodal 
network orient more (less) than those in the corresponding unimodal network. These differences in the 
orientation behavior of the two chains arise from differences in fluctuations of chain dimensions that, in 
turn, affect the microscopic strain of each component. Predictions of the theory are compared in the 
following paper with results of Fourier transform infrared measurements on well-defined poly- 
(dimethylsiloxane) networks. 

I. Introduction 
Mechanical properties of bimodal poly(dimethylsi1ox- 

ane) (PDMS) networks consisting of short and relatively 
long chains were experimentally studied by Mark and 
co-workers1 to understand the rubber elasticity behavior 
of these systems. Such networks were found to be 
unusually tough. They exhibit values of the modulus 
which increase very substantially at high elongations, 
thus giving unusually large values of the ultimate 
strength. This improvement in mechanical properties 
was attributed to the limited extensibility of the short 
chains. 

The theoretical analysis of bimodal networks, on the 
other hand, was first performed by Higgs and 
These networks are composed of two types of chains, 
conveniently referred to as short and long chains, 
differing either in their molecular weight or in their 
chemical structure, thus obeying two distinct probability 
distribution functions for their end-to-end separations. 
The original theoretical approach, based on Gaussian 
phantom network chains for both components, was 
essentially developed for random bimodal networks with 
a random number of short or long chains connected at 
a given junction. Later, Kloczkowski et al.3 considered 
the statistical mechanics of regular bimodal networks, 
which, by definition, have a fxed number 4s and 4~ of 
short and long chains, respectively, at every junction 
and hence lend themselves to analytical solutions. 
Closed-form expressions were derived therein for the 
fluctuations and correlations in the positions of the 
junctions. The validity of the affine deformation of 
mean chain dimensions in bimodal networks, irrespec- 
tive of the lengths or structural characteristics of the 
two types of chains, was verified recently by computer 
simulations of bimodal trifunctional  network^.^ Mine  
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transformation of mean chain end-to-end separations 
emerged in simulations as a consequence of the force 
balance a t  each junction, operating both in the unper- 
turbed and in the deformed state. 

Although the theoretical works of both Higgs and 
Ball2 and Kloczkowski et al.3 have clarified the state of 
deformation for the short and the long chains at the 
molecular level, a clear picture of segmental orientation 
in bimodal networks is not yet available. On the 
experimental side, the FTIR measurements of Hanyu 
and Stein5 and deuterium NMR measurements of 
Chapellier et a1.6 are the only ones on segmental 
orientation of the two types of chains in bimodal 
networks. In both of these studies, the short and the 
long network chains are observed to undergo equal 
degrees of segmental orientation. Nevertheless, this 
interesting observation may not be considered conclu- 
sive unless it is confirmed by theory and further 
experiments. The purpose of the present paper is to 
investigate from theoretical point of view the state of 
segmental orientation in uniaxially deformed bimodal 
networks in comparison to the behavior of the cor- 
responding unimodal networks. The theoretical ap- 
proach of Kloczkowski et al.3 is extended to treat 
segmental orientation in bimodal networks. Predictions 
of the present paper will be used in the following paper7 
to interpret experimental data from polarized Fourier 
transform infrared measurements on PDMS networks. 

The paper is organized as follows: In the following 
section, general features of three-dimensional phantom 
networks are briefly reviewed. Chain dimensions in 
undeformed phantom networks and their fluctuations 
are described for both unimodal and bimodal networks. 
In section 111, the molecular deformation of unimodal 
and bimodal network chains is recapitulated. The 
extension of the theory of segmental orientation3 to 
bimodal networks is presented in section IV. Synergis- 
tic effects in configurational factors for segmental 
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orientation, associated with the bimodality of the net- 
work, are presented in section V. Illustrative calcula- 
tions are presented in section VI followed by concluding 
remarks in section VII. 

11. Chain Dimensions in Undeformed Phantom 
Networks 

The phantom network model is based on three as- 
sumptions: (i) the end-to-end separations of the network 
chains are Gaussianly distributed, (ii) some of the 
junctions at the surface of the networks are fixed and 
transform affinely with macroscopic strain, and (iii) the 
chains are subject only to  topological constraints that 
arise directly from the connectivity of the network and 
to elastic forces of entropic origin. The effects of 
junctions and chains on one another is of no conse- 
quence. The effect of the macroscopic strain is trans- 
mitted to a chain through the junctions. This feature 
holds at all deformations. Mean chain dimensions (?)o 
in the reference state and instantaneous fluctuations 
(Ar2) in chain dimensions are related to  network chain 
dimensions (r2)o by 

and 

Here an overbar refers to  the time average for a given 
network chain, angular brackets indicate the ensemble 
average over all network chains, the subscript zero 
refers to the unperturbed state, and 4 denotes the 
functionality of the junction. 

In the case of a bimodal network, 4 may be written 
as 4 = $L + $s, where C$L and 4s refer to  the number of 
long and short chains meeting at each junction. A 
bimodal network in which all junctions have the same 
qh and 4s is a regular bimodal network. The possibility 
of analytical treatment of regular bimodal networks 
makes them particularly attractive. 

In regular bimodal networks the components referring 
to short and long chains, (?)o,s and (F>O,L, are related 
to the unperturbed dimensions of the corresponding 
chains by3 

and 

( p 2 ) o , ~  - A  - 1 
(r2>o,L A + l  

(3) 

(4) 

where 0 I E 5 1 is the ratio of the contour lengths of 
the two types of network chains, i.e., 6 (r2>o,s/(r2)o,L. A 
and B, given by Kloczkowski et al.,3 are functions of the 
network parameters $s, $L, and 5, thus identifylng the 
topology of the network. A and B for a given network 
are evaluated from the numerical solution of the double- 
recursion formula 

(5) 

recently derived by Kloczkowski et al.3 using Kirchhoff 
or valency-adjacency matrix representations of the 
graph theory. Likewise, fluctuations in chain dimen- 
sions are given in regular bimodal networks by the 
relationships3 

(6) 

(7) 

Equations 3, 4, 6, and 7 hold also for the x ,  y ,  and z 
components of r. 

111. Molecular Deformation in Bimodal 
Phantom Networks 

Molecular deformation in networks is expressed by 
the tensor A, with the components Ax2, Ay2, and At2 
defined as9 

where x,  y, and z refer to the components of the chain 
vector r along the axes of a laboratory-fixed frame. The 
second equalities in eqs 8 follow from the dot product 
(rr) and from the assumption that fluctuations are 
independent of macroscopic deformation. For phantom 
networks under uniaxial stress along the x direction, 
these components become 

Ax2 = (1 - 2/4)A2 + 214 

Ay2 = AZ2 = (1 - 2I4))Ap1+ 214) (9) 

Here II is the extension ratio along the x direction, given 
by 

(10) 

II  represents the macroscopic deformation of the network 
along the stretch direction. 

For bimodal networks, components of molecular de- 
formation under uniaxial stress are obtained by sub- 
stituting expressions 3, 4, 6 ,  and 7 into eq 8 as 
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for short chains, and 

for long chains. For a unimodal network (6 = 1, A = B 
= q!J - 11, eqs 11 and 12 reduce to  eq 9. Equations 11 
and 12 indicate that the long and short chains are 
subject to different deformations on a molecular level. 
When time-average chain dimensions are exclusively 
considered, however, the same deformation or extension 
ratio 1 applies to both types of chains. 

IV. Segmental Orientation in Bimodal Phantom 
Networks 

Segmental orientation in uniaxial deformation is 
given by the relationlo 

s = D ~ ( A ~ ~  - (13) 

Here, Do is the configurational factor accounting for the 
effect of intrinsic structural and conformational char- 
acteristics of the network chains on segmental orienta- 
tion. In the simplest treatment represented by Kuhn's 
freely jointed chains of N equivalent bonds (or seg- 
ments), Do equates to 1/5N. In more refined approaches 
incorporating the conformational statistics of realistic 
chains, a good approximation to Do isl1J2 

DO = (3(r2 cos2 Q)d(r2>o - 11/10 (14) 

where Q is the angle between the end-to-end vector and 
the chain-embedded vectorial quantity whose orienta- 
tion is being studied. The angular brackets in eq 14 
refer to the ensemble average over all configurations of 
the network chain in the unperturbed state. Higher 
order moments, (rZn) and (rZn cos2 @) with n L 2, appear 
in more rigorous expressions for D0.13 

Inasmuch as segmental orientation is a quantity 
representative of the average behavior of all network 
chains and observable vectorial quantities affixed along 
the chain contours, an expression of the form 

S ( W )  = W S S ( W )  + (1 - W)S,(W) = wsso + 
(1 - w)SL0 + AS'(W) (15) 

may be written for segmental orientation S ( w )  in 
bimodal networks. Here, w is the weight fraction of 
short chains in the bimodal network, which, in terms 
of the network structural parameters @s, h, and <, reads 

4 S 5  
4 L  + 4s5 W =  (16) 

Ss(w) and SL(W)  are the segmental orientations of short 
and long chains in the bimodal network which, them- 
selves, depend on w as indicated by the arguments, Ss" 
and SL" are the segmental orientations of the short and 
long chains in unimodal networks under the same 
topological and stretching conditions, and AS(w) is a 
perturbation term accounting for the depature from a 
so-called ideal behavior. As may be inferred from eq 
15, the ideal behavior refers here to the case where 
AS(w) = 0. Accordingly, the segmental orientation of 
the bimodal network S(w)  is indistinguishable from the 

weighted sum of Ss" and SL". This, however, does not 
imply that Ss(w) = SS" and SL(W)  = SL" but, instead, a 
relationship of the form 

SL(w) - S," = -[&][Ss(w) - Ss"l (17) 

holds. 
AS(w) may be viewed as a property change due to the 

coexistence of two chains of different lengths in the 
network. In geneal, it should depend on the relative 
amount of the two components as indicated by the 
argument, in analogy to the thermodynamic behavior 
of mixtures. For regular bimodal networks, AS(w) is 
identically equal to zero, as will be demonstrated at the 
end of this section. 

From the combination of eqs 11-13 one obtains for 
regular bimodal networks 

and 

The terms in brackets in eqs 18 and 19 depend on 
network topology and composition. The dependence of 
Ss(w) and SL(W)  on w is implicit in the parameters A 
and B ,  which vary with the number of short and long 
chains, 4s and ~ ! J L ,  meeting a t  each junction in regular 
bimodal networks. DL" and Ds" are functions of the long 
and short chain intrinsic configurational features only. 
They are each given by expressions analogous to  eq 14. 
In the simple case of the Kuhn approximation, they 
equate to  1/5Ns and 1/5N~,  respectively, Ns and NL 
referring to  the number of Kuhn segments in short and 
long chains, DL" and Ds" account for the molecular 
orientation of short or long chains in unimodal networks 
according to 

(20) 

(21) 

which directly follow from substitution of eqs 9 into eq 
13. Equations of this form have been conveniently used 
in previous interpretation of segmental orientation 
measurements in unimodal networks. They present the 
advantage of relating S directly to the macroscopic 
deformation 1. Their counterparts in bimodal networks, 
eqs 18 and 19, present the same advantage. 

The deviations from ideal behavior in bimodal net- 
works may be embodied in the perturbation term A S ( x )  
of eq 15 as 

(22) 

where hD(w)  refers to change in configurational factor 
due to bimodality. For regular bimodal networks hD(w) 
is obtained by substituting eqs 18-21 into eq 15, as 

S," = Ds"(l - 2/4)(A2 - A-l)  

S L "  = DL"(1 - 2/4)(A2 - A-') 

As(w) = AD(w)(A2 - A- l )  

1 
AD(w) = 2w[; - &IDS0 + 

The right-hand side of eq 23 is identically zero, which 
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may be shown as follows: Equation 24 may be rear- 
ranged as 

The identities wl(1 - w) = &&L and DL'lDs" = N ~ N L  
= 4 have been used in deriving eq 24. The latter follows 
from the Kuhn approximation for the configurational 
factor and/or from eq 14 which has been shown to be 
linear in 1/N. Using the relation3 

in eq 24, we obtain 

(25) 

The numerator of the right-hand side of eq 26 may be 
rewritten, by the use of eq 36b of Kloczkowski et al.,3 
as BA2 - AB2 - B + Ale2, which equates to zero upon 
substitution of eq 36a of the same reference. Thus, we 
arrive at the important conclusion that AD(w) = 0 and 
consequently AS(w) = 0 for regular bimodal networks. 

It is noted that substitution of eqs 6 and 7 into eq 24 
and using AD(w) = 0 lead to  the following relation 
among the fluctuations of long and short chains: 

4s((~rs)') ~ L ( ( A ~ L ) ' )  + 
( r 3 0  ( r L 7 0  

= 2  (27) 

This reduces to the well-known expression 

(28) 

for unimodal networks. 
As mentioned above, the fact that AS(w) = 0 for 

regular bimodal networks does not exclude the possibil- 
ity of perturbations in the segmental orientation of short 
and long chains in bimodal networks. On the contrary, 
in bimodal networks the segmental orientation of short 
and long chains is observed to differ from those taking 
place in unimodal networks. Qualitatively, a decrease 
in orientation is observed617 in short chains due to the 
presence of long chains, and an increase in orientation 
of long chains is imparted by the presence of short 
chains in bimodal networks, as intuitively expected. The 
following paper' will concentrate in those changes in 
segmental orientations of individual chains due to 
bimodality of the network. 

V. Changes in Configurational Factors of 
Individual Chains 

Equations 18 and 19 consist of the product of three 
terms accounting for (i) the effect of intrinsic configu- 
rational factor through Ds" or DL", (ii) the network 
topology and composition, and (iii) the macroscopic 
strain. From the examination of eqs 18-21, we observe 
that the changes in the segmental orientations of the 
network chains in bimodal networks relative to  those 

occurring in unimodal networks, arise from the changes 
in the second term, which reflects the effect of network 
topology and composition. Mainly, the terms in brack- 
ets in eqs 18 and 19 reduce to  the term (1 - 2/41 in 
unimodal networks. For convenience, we define the 
product of the two contributions (i) and (ii) as the 
effective configurational factors. Using eqs 18-21, the 
changes ASs(w) and ASL(W) in the segmental orienta- 
tions of short and long chains, respectively, in regular 
bimodal networks read 

where 

and 

are the changes in the effective configurational factors 
of short and long chains, respectively, due to the 
bimodality of the network. The dependence of hDs(w) 
and ADL(w) on the composition of the network arises 
from the dependence of the parameters A and B on 
network topology, as already mentioned for ASs(w) and 
ASL(W). The dependence of ADs(w) and ADL(w) on 
network composition will be illustrated in the next 
section. 

It is interesting to note that, in regular bimodal 
networks, which were shown above to exhibit the ideal 
behavior, defined as AS(w) = AD(w) = 0, the changes 
in the configurational factors of short and long chains, 
given by eqs 31 and 32, will have opposite sign and will 
be related to each other by an expression equivalent to 
eq 17, i.e., 

(33) 

This equation readily follows from the substitution of 
eqs 29 and 30 into eq 17. The use of eqs 31 and 32 in 
eq 33 yields 

Equation 34 reduces to eq 27 upon substitution of DL'l 
Ds" = 6 and using eq 16. 

VI. Illustrative Calculations 
The changes in configurational factors of short and 

long chains induced by the bimodality of the network 
are shown in Figures 1 and 2 as a function of the ratio 
4 = (r2)o,s/(r2)o,L of the unperturbed mean-square lengths 
of short and long chains. The curves in Figure 1 are 
obtained for the three possible types of regular bimodal 
networks with functionality Q = 4, mainly QS = 4 - 4~ 
= 1, 2, and 3. These are indicated by the labels S1L3, 
S ~ L Z ,  and S3L1, respectively. Those in Figure 2 are 
obtained for trifunctional regular bimodal networks for 
the two cases SILZ and SZLI. The upper curves in both 
figures represent the ratio ADI/DLO corresponding to  the 
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Figure 1. Change in configurational factors ADxlDxo of short 
(x = S) and long (x = L) chains induced by bimodality in 
regular tetrafunctional networks. The upper curves in both 
Figures 1 and 2 represent the ratio A D ~ D L "  corresponding to 
the long chains, while the lower three curves display the ratio 
ADdDs" for short chains. The points indicate the results from 
calculations using eqs 31 and 32. Best fitting curves through 
these results are drawn to  guide the eye. 

-0.40' ' ' ' ' ' ' ' 
0.0 0.2 0.4 0.6 0.8 1.0 

5 
Figure 2. Change in configurational factors ADxlDx" of short 
(x = S) and long (x = L) chains induced by bimodality in 
regular trifunctional networks. See legend for Figure 1. 

long chains, while the lower curves display the ratio 
ALIslDs" for short chains. The points indicate the 
results from calculations using eqs 31 and 32. Best 
fitting curves through these results are drawn to guide 
the eye. 

The long chains exhibit a positive deviation from their 
values in the unimodal network, whereas a negative 
departure is observed in short chains. Inasmuch as the 
increase in the value of the configurational factors is 
directly reflected upon the segmental orientation, as 
delineated in eqs 29 and 30, these results indicate that 
the long chains are more oriented in bimodal networks 
compared to chains of the same length in unimodal 
networks. The short chains, on the other hand, exhibit 
a decrease in the configurational factor, which leads to 
weaker orientation of short chains in bimodal networks 
compared to the behavior of their unimodal counter- 
parts. 

The ratios SdSs" and S~SL"  of the segmental orienta- 
tions of short and long chains in bimodal networks 
compared to those observed in unimodal networks 
subject to the same functionality and deformation are 

0 "  m . 
v) 

0.0 0,2 0 4 0 6 0.8 1.0 

5 
Figure 3. Ratio Sx/Sxo of the segmental orientations of short 
(x = S) and long (x = L) chains in bimodal networks compared 
to  those observed in unimodal networks subject to the same 
functionality and deformation in tetrafunctional regular net- 
works calculated from eqs 35 and 36. These results hold 
irrespective of the state of deformation and intrinsic chain 
configurational characteristics. 

shown in Figure 3 for tetrafunctional regular networks. 
These are calculated from the equations 

which readily follow from the ratio of eqs 18 to 20 and 
eq 19 to 21. The extension ratio being eliminated in 
this ratio, the curves are independent of macroscopic 
deformation. Yet, it should be recalled that eqs 18-21 
represent the first-order approximation for segmental 
orientation in which higher order terms in 1/N are 
neglected. Thus, the curves in Figure 3 are applicable, 
in a strict sense, for networks of sufficiently long chains, 
which are subject to relatively small deformations. 

In analogy to Figures 1 and 2, the curves above the 
horizontal line SIS" = 1 in Figure 3 represent the ratio 
SJSL" of long chains; the lower curves display SS/Ss". 
The short chains in bimodal networks with @L = 1 (i.e., 
S3L1) are weakly affected by the presence of one long 
chain at each junction. Likewise, the long chains in 
bimodal networks of type S1L3 exhibit small deviations 
from their unimodal counterparts. Therefore the in- 
troduction of a low number of chains of a different length 
in a unimodal network has a weak effect on the 
orientation behavior of the original chains. The depar- 
tures from unimodal network behavior for chains of a 
given length, either S or L, become more significant if 
those chains are in lower proportion in the bimodal 
network. Thus, in the case of three long chains at a 
given junction, the segmental orientation of short chains 
in bimodal networks strongly departs from that ob- 
served in unimodal networks, coming closer to the 
isotropic value S = 0 as the ratio E decreases. The 
orientation of the long chains, on the other hand, is 
systematically increased by increasing amount of short 
chains. It is enhanced by a factor of 2 in the limit of 6 
= 0 for bimodal networks of the type S3L1. We also note 
the symmetric shape of the curves for short and long 
chains with respect to the horizontal line SIS" = 1. 
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and exhibit a decrease in the effective configurational 
factor which leads t o  a weakening in preferential 
alignment. 

VII. Conclusion 
The present study has extended the recently devel- 

oped3 theoretical analysis of regular bimodal networks 
to treat the segmental orientation of the two types of 
chains as a function of the configurational characteris- 
tics of the chains, network topology and composition, 
and macroscopic state of deformation. Results of the 
formulation show that segmental orientation in the long 
chains of the network is larger than the corresponding 
one in the unimodal network. Conversely, shorter 
chains orient less in the bimodal network compared to 
the corresponding chains in the unimodal network. 
These predictions will be tested against experimental 
data from Fourier transform infrared study of well- 
characterized PDMS networks presented in the follow- 
ing paper. 
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through the points are the best fitting third-order 
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chains are less sensitive to the presence of long chains 
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