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ABSTRACT: The Nagai formulation of segmental orientation in stretched polymer chains is applied to 
segmental orientation in amorphous elastomeric networks under biaxial deformation. The orientation 
of a reference vector, m, rigidly affied to a chain of the biaxially drawn network is investigated. The 
orientation of m is characterized by two orientation functions, S, and S,, where x and y are the laboratory- 
fmed axes along which the macroscopic biaxial deformation is prescribed. Expressions for S, and S, are 
obtained in the form of a series expansion, grouped into terms depending on their order with respect to 
lln, and on the magnitude of applied deformation. Expressions including terms up to the fourth power 
of lln (n = number of chain repeat units) and eighth power of the extension ratios are derived. 
Configurational averages appearing in the coefficients of the expression for the orientation functions are 
obtained by Monte Carlo simulation for a poly(ethy1ene)-like model chain with 100 bonds. Different levels 
of approximation for S, and S,, comprising terms linear and second order in l/n, are compared. The 
limits of validity of the expressions are discussed in relation to finite chain extensibility. Results of 
calculations show that the segmental orientation S, is strongly affected by finite extensions imposed 
along the transverse direction, y. When the strains are made infinitesimally small, however, S, is 
demonstrated to be uncoupled from the strain applied along the y-direction. 

Introduction 
Molecular aspects of segmental orientation in uniaxi- 

ally deformed networks have been studied extensively, 
both the~ret ical lyl-~ and experiment all^.^-^^ The prob- 
lem has been investigated at different levels of ap- 
proximation. Among these, the well-known Kuhn ex- 
pression for a freely jointed chain model,l* 

1 
5N s = - (A2  - l / A )  

has been successful in interpreting experimental data 
for segmental orientation in uniaxial deformation. 
Equation 1 relates the second-order Legendre polyno- 
mial, or the orientation function, S, of the Kuhn seg- 
ments of a chain to the number N of Kuhn segments 
and the extension ratio, A, in uniaxial deformation. This 
simple expression, which is the first term of a series 
expansionlg in terms of polynomials of A, has later been 
generalized to the analysis of real chains by Nagai.l 
Effects of higher order terms resulting from large 
deformations and short, non-Gaussian chains have been 
gi~en.~p~O On the experimental side, various techniques 
have been used successfully. Among these are infrared 
d i ~ h r o i s m , ~ J ~ - ~ ~  'H-NMR ~ p e c t r o s c o p y , ~ - ~ ~  fluorescence 
polarization,21,22 and wide angle X-ray scattering.16J7 

The study of segmental orientation in biaxially ori- 
ented polymers, on the other hand, both on experimen- 
tal and theoretical grounds, has been mostly confined 
to un-cross-linked systems.21,23,24-26 This is notably due 
to the recent technological success of high-performance 
biaxially oriented polymer films. A detailed molecular 
theory of biaxial orientation for networks is missing at 
the present. The aim of the present study is to extend 
the Nagai formulation of segmental orientation in 
uniaxially deformed networks to the analysis of biaxially 
oriented amorphous networks. In this sense the present 
paper is a continuation of the previous s t ~ d y , ~  which 
will be referred to as paper 1. 
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Theory 
Model and Assumptions. The molecular model of the 

present analysis of biaxial orientation and the assumptions 
are similar to those adopted for uniaxial segmental orientation: 
(i) The network is affine. The end-to-end vector of each 
network chain transforms affinely with macroscopic strain. 
Implicit in this assumption is that the junctions at the ends 
of the chains do not fluctuate in space. (ii) The network is 
incompressible. (iii) The segments of the chain do not interact 
with the surrounding chains in the deformed network and 
therefore exhibit a phantom-like behavior. Implicit in this 
assumption is that the segments along the chain contour 
fluctuate in space, subject only to the constraints imposed by 
the fked ends of the chains. The orientation of the segments 
is a direct consequence of the displacement of the two ends of 
the chain and is therefore of purely intramolecular origin. (iv) 
The network is subject to a state of principal homogeneous 
macroscopic deformation. (v) The distribution of the orienta- 
tions of chain vectors and segments in the undistorted network 
is isotropic. 

State of Macroscopic and Microscopic Deformation. 
Biaxial orientation is discussed in terms of the macroscopic 
deformation tensor, 1, which is defined as 

Here, d, and I ,  are the ratios of the final to the undeformed 
lengths of the sample along the laboratory-fixed x -  and y-axes. 
The sample is deformed in the xy-plane, I ,  and 1, are the 
independent variables characterizing the macroscopic defor- 
mation. The deformation along the z-direction follows from 
the incompressibility assumption. 
As a result of the affine network assumption, the ratios of 

the mean square averages of the x- ,  y-, and z-components of 
the end-to-end vectors in the deformed state to those in the 
undefomed state are related to the components of the 
macroscopic deformation tensor as 

The brackets indicate the ensemble average over all chain 
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relative to x -  and y-axes for a chain with a fixed end-to-end 
vector is obtained as (cos2@,), and (cos' ey),. During this 
averaging, the chain is assumed to take all possible configura- 
tions subject only to the constancy of the chain contour length 
and the end-to-end vector, r. That the chain may take all 
possible configurations is a consequence of the phantom-like 
chain assumption. It is to be noted that the use of this 
assumption limits the problem to systems where intermolecu- 
lar interactions are small or nonexistent. The present formu- 
lation cannot therefore be applied to the analysis of orientation 
in un-cross-linked bulk polymers below the glass transition 
temperature where the dominant forces orienting the segments 
are intermolecular. The second stage of the averaging is 
performed over all magnitudes and orientations of the end- 
to-end vectors. During this averaging the affine network 
assumption is employed as a result of which the problem is 
simplified significantly. The details of the two steps of 
averaging are as follows. 

Step 1: Averaging over all configurations of a chain with 
fixed r. At this step, the average (cos' (k = x or y )  is 
evaluated. The expression for this average in real chains 
follows from paper 1 as 

- 

t 

Y + 

X 

X 

J 
z 

Figure 1. (a) Schematic representation of the investigated 
vector m, making angle 0, with the x-axis of the laboratory- 
fixed frame Oxyz and angle @, with the y-axis. (b) Schematic 
representation of the end-to-end vector r and the investigated 
vector m, making angle @ with r. 

configurations, and the subscript 0 represents the undeformed 
state. 

Description of Segmental Orientation. The orientation 
of a vector, m, affixed to a chain in a network which is biaxially 
deformed along x -  and y-directions is investigated. In infrared 
spectroscopy, m is usually identified with the transition 
moment vector whose orientation is being detected experi- 
mentally. The orientation of m with respect to the laboratory- 
fmed frame Oxyz is described by the angles @, and @,. m 
makes an angle, @, with the instantaneous position of the end- 
to-end vector r, of the chain to which it is rigidly affixed, as 
shown in Figure 1. Two independent second Legendre h c -  
tions are used to describe the orientation of m with respect to 
the x -  and y-directions, respectively, as 

s, = 1/z[3(C0S2 e,) - 11 

s, = 1/z[3(C0S2 ey) - 11 

(4) 

( 5 )  
Here, the angular brackets refer to the ensemble average of 
all chain configurations. Positive S, (or Sy)  values correspond 
to a preferential orientation along the x-  (or y-) direction, 
whereas negative S, (or S,) values indicate a preference for 
confinement in the plane perpendicular to z- (or y-) axes. 

Expression of Segmental Orientation Based on the 
Nagai Form~lation.~,~ The expression for the orientation of 
a given segment relative to a laboratory-fixed axis may be 
obtained in its most general form following the formulation 
by Nagai. The averages (cos2 6,) and (cosz 0,) of eqs 4 and 5 
are found in two steps: First, the average orientation of m 

i 

for k = x or y. There are two groups of variables of different 
character on the right-hand side of eq 6. (i) vi and gi. These 
depend on the average configurational properties of the 
network chains in the undeformed state and are independent 
of the state of deformation. They are expressed in terms of 
the moments (?m)~ (1 I m I 4) and (rZm cos2 @)o of the end- 
to-end vector r. Expressions for these variables have been 
given in paper 1 and are also reproduced in Appendix 1 for 
completeness. The parametersgi and vi scale with the number 
of segments, n, in the chain 

(7) 

(ii) a, and pi. These variables depend on the particular chain 
conformation and therefore assume different values depending 
on the state of macroscopic deformation. Explicit expressions 
for a, and are presented in paper 1 and Appendix 2. The 
full expression given by eq 6 is truncated at different terms, 
depending on the order of approximation used in the treat- 
ment. 

Step 2: Averaging over all chains in the deformed network. 
At this step, the expression given by eq 6 has to  be averaged 
over the ensemble of chains with various orientations and 
magnitudes of end-to-end vectors. The resulting average is 
denoted as (cosz @k),  where k = x or y. This step requires the 
evaluation of the terms (ab) and ( G k p j k ) ,  conforming with eq 
6. The explicit forms of these averages were derived in paper 
1 for the case of uniaxial deformation. For biaxial orientation, 
by following the procedure adopted in paper 1, the ensemble 
averages (ai&) are obtained for 1 5 i 5 4 from eqs 2-1 and 2-2 
in Appendix 2 and their products as 
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(COS2 6,) E ((COS2 e&) = 'f3[1 f DlA% + D2A4h -k D& f 

D4Aah -k ... 1 (11) 

where the Coefficients Di, referred to as the ith configurational 
factor for segmental orientation, are given for 1 5 i 5 4 by 

D ,  = 2q2 + 147, + 1267, + 13867, - 3ovag4 - 2lOvag6 - 
18907ag, - 210778, - 18907g4 

5346 (r4)oA + 

5 (r2>: 4h 
(aG) = 1386A, - - - 

Likewise, the ensemble averages (a&k) appearing in the 
expansion for (cos2 &), after truncating terms scaling with (1/ 
nP where a > 3, are expressed as 

(r4>o (al&J = 210A, - 37-11 f 
(r2>: 4k 

(r4>o 
(r2>02 4k 

(Mlk) = 210A, - 306-A + 

A%, &, &k, and & in eqs 8 and 9 are polynomials in the 
components of the macroscopic deformation tensor. Explicit 
expressions for these polynomials, referred to as deformation 
functions hereafter, are 

for the case k = x .  Expressions for Aiy ( i  = 2,4 ,  6, and 8) are 
readily obtained by exchanging the subscripts x and y in eq 
10. 

Substituting the ensemble averages given by eq 9, as well 
as eqs 1-1 and 1-2 of Appendix 1, into eq 6 leads to the average 
square cosine of the angle between the vectors m and the 
laboratory-fixed axes, x or y .  The resulting expression is 
organized as 

(r70 
D4 = 18(7&6 + 36vag8 + 784 + 2 8 1 & 4 E  

The coefficients D, (1 I i I 4) are functions of only chain 
constitution and otherwise do not depend on the state of 
deformation.26 In eq 11, the terms are grouped so as to give 
the leading term of D1 of order n-l, the leading terms of DZ 
and D3 of order n-2, and that of D4 of order n-3. Replacing eq 
11 into eqs 4 and 5 leads to the orientation function, s h  (k = 
x or y) ,  in terms of D, and A2,k as 

s h  = '/2[DIA, f D2Aa f D3A6k -k D4Aah + ...I (13) 
Different Levels of Approximation. The state of seg- 

mental orientation at various levels of approximation may be 
obtained from eq 13 by retaining the relevant terms in the 
brackets. These terms consist of products of two factors, the 
configurational factors Di and the deformation functions Ask. 
The former are functions of average chain dimensions in the 
unperturbed state. Terms with larger subscript i become 
smaller with increasing chain length. A2,k's are functions of 
the macroscopic state of deformation. Those with larger 
subscript i are of higher order in extension ratios and therefore 
become much smaller at small deformations. There is no clear- 
cut criterion for estimating how many of the terms in eq 13 
should be retained in different situations. In neglecting the 
higher order Dis, one may adopt the plausible criterion that 
the chains should be sufficiently long to behave as Gaussian. 
For poly(ethy1ene) chains, for example, Gaussian behavior is 
obtained when the number of repeat units exceeds ca. 50 or 
60.27,28 For neglecting higher order A u k ,  on the other hand, 
the deformation should be sufficiently small. In this case, one 
should consider the degree of stretch of the chain under a given 
macroscopic deformation with the finite extensibility of the 
chain. In uniaxial extension, finite extensibility constraints 
operate when the macroscopic extension ratio reaches the 
maximum value, A,,u. The latter is related to chain param- 
eters by 

Here, rmax is the maximum elongation of the chain with all- 
trans configuration, (r2)om is the mean square end-to-end 
vector of unperturbed chains, I is the bond length, and 0 is 
the supplemental bond angle. For the freely rotating bond 
model chain of 100 bonds, which will be used in the present 
simulations for example, eq 14 gives I, = 5.83. A relation- 
ship of maximum extensibility of chains to the macroscopic 
state of biaxial deformation cannot be uniquely obtained, 
however, due to the presence of two independent variables, A, 
and 4. For the biaxial case, one may adopt the plausible 
assumption that the first strain invariant is the same under 
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Table 1. Moments Calculated from Monte Carlo 
Simulation 

m (+m)o (A') (9.2" cos2 @)o ck, 
1 4.684 x 10' 1.600 x lo2 
2 3.592 x lo5 1.239 x lo5 
3 3.779 x 108 1.316 x lo8 
4 5.004 x 10" 1.758 x 10" 

I = 5 1  I x !  

uniaxial and biaxial deformation when the maximum exten- 
sibility of the chains is reached. Thus, 

Il,max = A: + A; + a; (15) 

2 2  1 
= A&.&u + - = Amaxr + L x y  + 

lmax,u  1 I ax 2 :ax y 

where 11,- is the first strain invariant when the chains reach 
their finite extensibility limits, is given by eq 14, and 
d,,, and Ammy are the maximum extension ratios in biaxial 
deformation. Since the maximum extension ratios will be 
considerably larger than unity, eq 15 may be approximated 
by 

0.15 

(16) 

I We note that for the freely rotating model chain of 100 bonds, 
the right-hand side of eq 16 equates to 34. 

For sufficiently long chains under relatively small deforma- 
tions, one may use the first-order approximation by choosing 
the following set of coefficients: 

Dl = 2v2 

0 15 

0 1 -  
cn 

005 D, = D, = D4 = 0 (17) 

I = 5 1  

x !  

- 
For higher extension ratios or shorter chains, the second- 

order approximation is applied by choosing the following set 
of coefficients: 

D, = 272 + 1474 + 12676 - 3O7&4 

y: 0.05 

D, = 0 

Here, DI scales as n-l and DZ and 0 3  scale as n-2. 
The infinitesimally small deformation limit may be obtained 

by substituting E, = d, - 1 and E, = A, - 1 into eq 10, retaining 
the linear terms only in the numerators by taking (1 + = 
1 + mg,  and inserting the resulting deformation functions into 
eq 13. The resulting expression for segmental orientation 
turns out to be identical in form to that obtained in paper 1 
for uniaxial deformation, Le., 

O ' I l  

for k = x ory. This unexpected result indicates that segmental 
orientation Sk along the k-direction for infinitesimal biaxial 
deformations is a function of the strain €k along this direction 
only and is uncoupled to the imposed strain along the other 
direction. 

Calculations. The dependence of biaxial orientation on the 
state of macroscopic deformation and chain parameters is 
investigated in this section for a model chain of 100 bonds. 
The configurational averages appearing in the coefficients Di 
are calculated by the Monte Carlo technique as described 
b e f ~ r e . ~ . ~ ~  The choice of the Monte Carlo technique rather than 
the exact generator matrix multiplication s ~ h e m e ~ ~ ~ 2 ~  is dic- 
tated by the presence of the higher order moments in D,. 
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Figure 2. (a) Dependence of S, on the extension ratio along 
the y-direction, A,, for given Ais. The solid curves represent 
the first-order approximation, evaluated with eqs 13 and 17. 
The dotted curves are obtained with the second-order ap- 
proximation, by inserting eqs 18 into eq 13. (b) Dependence 
of S, on A, for A, = 5.  See legend of panel a. 

Following conventional chain generation methods, bond-based 
coordinate systems are defined for skeletal bonds and the 0th 
atom is placed at  the origin. The length of the C-C bonds is 
taken as 1.53 A, and the supplemental bond angle LCCC is 
70.53'. Three rotational isomeric states, trans (t), gauche (g+), 
and gauche (g-) with respective torsional angles of O", 120°, 
and -120°, are assigned with equal probability to backbone 
bonds, conforming with the freely rotating model of chain 
statistics. The moments (1.2")o and (1.2" cos2 @)o are evaluated 
over an ensemble of lo5 Monte Carlo chains; the resulting 
values for m = 1-4 are listed in Table 1. 

Results and Discussion 
The orientation functions S, and S, have been inves- 

tigated as functions of the biaxial state of deformation 
in terms of the first- and second-order approximations, 
using eqs 17 and 18, respectively. 

In Figure 2, the dependence of S, on the extension 
ratio Ay along the lateral direction is presented for three 
different values of extension ratios A, along the reference 
direction. A, is taken as 1 and 3 in Figure 2a and 5 in 
Figure 2b. In these figures, the solid lines represent 
the first-order approximation and the dashed lines the 
second-order approximation. The maximum value of 
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distinguishable in the range A, < 3. The orientation 
functions increase slowly in this region and exhibit a 
weak dependence on A,. In the range 3 < A, < 5, 
however, the second-order approximation shows an 
abrupt increase while the first-order approximation 
curves continue to increase smoothly. An interesting 
feature observed in Figure 3a is that a t  high values of 
A,, S, values for A, = 1 and 3 approach each other. In 
Figure 3b, S, is represented as a function of A, when A, 
is kept a t  a constant value of 5. A significant difference 
is observed between the orientation functions predicted 
by the first- and second-order approximations. I t  is 
clear that  for such large extension ratios along the 
lateral direction (A, = 5 )  there will be a negative 
orientation with respect to  the reference direction (S, 
< O), i.e., chain segments would tend to  be confined in 
a plane perpendicular to the x-axis. Again, the absolute 
value in the orientation function S, is considerably 
underestimated upon adoption of the first-order ap- 
proximation. The second-order approximation gives 
much lower values than the first-order, but the two 
curves have nearly the same slope. 

In Figure 4, S, and S, are plotted for compressive 
deformation along the y-direction with A, changing 
between 0.2 and 1.0. The solid lines result from the 
first-order approximation and the dashed lines from the 
second-order approximation. We note the difference 
between the two scales for S, and S, on the left and right 
ordinates, respectively, which indicates that S, is much 
more sensitive to variations in A,, compared to S,, at  
low A, values (Figure 4a), while the opposite behavior 
takes place a t  high A, values (FIgure 44 .  In Figure 4a, 
A, is kept contant a t  1. For A, larger than roughly 0.5, 
the first- and second-order approximations give identical 
results for both S, and S,. In Figure 4b, S, and S, are 
plotted keeping Ax constant a t  3. Throughout the whole 
Ay range, since the network is under compression in the 
y-direction, S, has positive values and S, has negative 
values. In Figure 4c, A, is kept fixed a t  5 and & is varied 
in the compression range shown. The first-order ap- 
proximation gives again lower values for S,  with respect 
to second-order approximation. S, is almost insensitive 
to A,, but S, shows a slight increase with increasing A,,. 
Comparison of panels a-c in Figure 4 shows that as A, 
increases from 1 to  3 the orientation increases along the 
x-direction and decreases along the y-direction. At a 
given A,, S, remains almost constant or changes slightly 
for 0.5 < A, < 1.0. As A, increases, the difference 
between the first- and second-order approximations 
increases. So the importance of the higher order ap- 
proximations for high extensions can be again empha- 
sized. 

Conclusion 
The Nagai formulation of segmental orientation in 

amorphous polymer networks is extended to the biaxial 
state of deformation, and the results of first- and second- 
order approximations are investigated in some detail. 
Examination of Figures 2 and 3 in this respect shows 
that the first-order approximation may be adopted for 
biaxial state of strain with sufficient accuracy for A, 
2 and A, 2. The limits of macroscopically applied 
extension ratios are discussed in relation to finite chain 
extensibility. The formulation, which is in general valid 
for finite extensions, is simplified for the case of 
infinitesimal deformations, leading to the interesting 
result that  segmental orientation with respect to a given 
direction is a function of strain applied in that direction 
only. 

~ 
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Figure 3. (a) Dependence of S, on I ,  for I ,  = 1 and 3. 
legend of Figure 2a. (b) Dependence of S, on I ,  for I y  = 5. 
legend of Figure 2a. 
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See 

the abscissa, A, = 5, in Figure 2a is chosen according to 
eq 16 so that maximum extensibility of the chains is 
not exceeded when A, = 3. Similarly, in Figure 2b, the 
abscissa range is chosen as A, I 3 so that the maximum 
extensibility is not exceeded when A, = 5 .  As expected, 
larger A, values lead to higher orientation along the 
x-direction, whereas with decreasing A, and increasing 
A, a preferential alignment along the lateral direction 
is indicated by the negative S, values. In Figure 2a, 
the first- and second-order approximations are close to 
each other in the range 1, < 3. For both approxima- 
tions, S, decreases with A,, as expected. The decrease 
in the second-order approximation is very strong in the 
range 3 < A, < 5, which indicates the inadequacy of the 
first-order approximation for treating segmental orien- 
tation as the deformation is increased. This feature 
becomes even more pronounced in Figure 2b, in which 
the dependence of S, on A, is shown for A, = 5. The 
difference between the results of the first and second 
approximations is significant. In fact, the extent of 
orientation along the x-direction is seriously underes- 
timated by adopting the first-order approximation. 

In Figure 3, S, is plotted against Ax for three different 
values of A,. In Figure 3a, the curves obtained with the 
first- and second-order approximations are almost in- 
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0.02 
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constraints imposed by fixing the chain ends. However, 
both theoretical and experimental work show that 
intermolecular interactions along the chain contour may 
contribute to segmental orientation a t  various levels of 
i m p o r t a n ~ e . * . ~ ~ - ~ ~  These effects are not taken into 
consideration in the present study. It is to be noted that 
the excess orientation, resulting from entanglements, 
diminishes strongly upon dilution with a suitable iso- 
tropic solvent. Also, increasing chain flexibility and the 
degree of cross-linking strongly diminishes the contribu- 
tion of entanglements on segmental orientation. 
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Figure 4. (a) Dependence of S, (left ordinate) and S, (right 
ordinate) on 2, with 2% = 1. Network chains are compressed 
along the y-direction. The solid lines are for first-order 
approximation, and the dashed lines are for second-order 
approximation. The arrows indicate the ordinate to which 
each curve belongs. (b) Dependence of S, and S, on A, with A, 
= 3. See legend of panel a. (c) Dependence of S, and S, on A, 
with A= = 5. See legend of panel a. 

The present theory is based on the phantom-like chain 
model. As stated in the description of the model, the 
major consequence of this assumption is that  the chain 
segments take all configurations, subject only to the 
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Appendix 1. Configurational Parameters vi and 
gi of the Nagai Theory 

The variables vi and gi in eq 6 ,  appearing up to third- 
order approximation, read as follows: 

and 
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Appendix 2. r Dependent Parameters ai and 
of Eq 6 

depend on the specific chain 
conformation in the deformed state. These are given 

The parameters Q and 

by 

a, = 3(3x2 - r2>/(r2), 
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For (cos' fly), the variable x is replaced by y. The 
parameters pi are functions of the end-to-end vector 
magnitude only and therefore are the same for x and y 
components: 

r2 r4 p1 E 15 - 30,+ 9 - 
( r  >o (r2>02 

r2 r4 r6 p2 E 105 - 315 - + 189- - 27- 
(r2>0 (r2>02 (r2>03 

+ p 3  E 945 - 3780 2 + 3402 - - 972 - r2 r4 r6 
(r >o (r2>02 (r2>03 

8 r 81- (2-2) 
(r2>04 

References and Notes 
(1) Nagai, K. J. Chem. Phys. 1964,40,2818. 

(2) Flory, P. J .  Statistical Mechanics of Chain Molecules; Inter- 

(3) Mark, J. E.; Erman, B. Rubberlike Elasticity. A Molecular 

(4) Erman, B.; Haliloglu, T.; Bahar, I.; Mark, J .  E. Macromol- 

(5) Fraser, R. D. B. J. Chem. Phys. 1953,21, 1511. 
(6) Read, B. E.; Stein, R. S. Macromolecules 1968, 1, 116. 
(7) Treloar, L. R. G. The Physics offlubber Elasticity; Clarendon 

(8) Jany ,  J. P.; Monnerie, L. Macromolecules 1979, 12, 316. 
(9) Deloche, B.; Samulski, E. T. Macromolecules 1981, 14, 575. 

(10) Deloche, B.; Dubault, A,; Herz, J.; Lapp, A. Europhys. Lett. 

(11) Dubault, A.; Deloche, B.; Herz, J. Polymer 1984, 25, 1405. 
(12) Dubault, A.; Deloche, B.; Herz, J. Macromolecules 1987,20, 

(13) Besbes, S.; Cermelli, I.; Bokobza, L.; Monnerie, L.; Bahar, I.; 

(14) Besbes, S.; Bokobza, L.; Monnerie, L.; Bahar, I.; Erman, B. 

(15) Kanberoglu, C.; Bahar, I.; Erman, B. Polymer 1993,34,4997. 
(16) Mitchell, G. R. Polymer 1984,25, 1562. 
(17) Mitchell, G. R. Br. Polymer J .  1985, 17, 111. 
(18) Kuhn, W.; Griin, F. Kolloid-2. 1942, 101, 248. 
(19) Roe, R.; Krigbaum, W. R. J .  Appl. Phys. 1964,35, 2215. 
(20) Haliloglu, T.; Bahar, I.; Erman, B. Comput. Polym. Sei. 1991, 

(21) Lapersonne, P.; Tassin, J. F.; Sergot, P.; Monnerie, L.; Le 

(22) Queslel, J. P.; Erman, B.; Monnerie, L. Macromolecules 1985, 

(23) Jarvis, D. A.; Hutchinson, I. J.; Bower, D. I.; Ward, I. M. 

(24) Zhao, Y.; Jasse, B.; Monnerie, L. Polymer 1991,32, 209. 
(25) Cakmak, M.; White, J. L.; Spruiell, J. E. J. Polym. Eng. Sei. 

(26) Erman, B.; Bahar, I. Macromolecules 1988,21, 452. 
(27) Flory, P. J.; Yoon, D. Y. J. Chem. Phys. 1974,61, 5358. 
(28) Yoon, D. Y.; Flory, P. J. J. Chem. Phys. 1974, 61, 5366. 
(29) Flory, P. J. Macromolecules 1974, 7, 381. 
(30) Erman, B.; Monnerie, L. Macromolecules 1985,26, 167. 
(31) Erman, B.; Bahar, I.; Kloczkowski, A.; Mark, J. E. Macro- 

(32) Sotta, P.; Deloche, B.; Herz, J.; Lapp, A.; Durand, D.; 

science: New York, 1969. 

Primer; Wiley-Interscience: New York, 1988; pp 196. 

ecules 1991, 24, 901. 

Press; 1975. 

1986, 1, 629. 

2096. 

Erman, B.; Herz, J. Macromolecules 1992,25, 1949. 

Polymer 1993,34, 1179. 

1, 151. 

Bourvellec, G. Polymer 1989, 30, 1558. 

18, 1991. 

Polymer 1980,21, 41. 

1990, 6, 291. 

molecules 1990, 23, 5335. 

Rabadeux, J.4. Macromolecules 1987,20, 2769. 

MA941013Y 


