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Background: An elastic network model is proposed for the interactions between
closely (≤ 7.0 Å) located a-carbon pairs in folded proteins. A single-parameter
harmonic potential is adopted for the fluctuations of residues about their mean
positions in the crystal structure. The model is based on writing the Kirchhoff
adjacency matrix for a protein defining the proximity of residues in space. The
elements of the inverse of the Kirchhoff matrix give directly the auto-correlations
or cross-correlations of atomic fluctuations. 

Results: The temperature factors of the Ca atoms of 12 X-ray structures, ranging
from a 41 residue subunit to a 633 residue dimer, are accurately predicted.
Cross-correlations are also efficiently characterized, in close agreement with
results obtained with a normal mode analysis coupled with energy minimization.

Conclusions: The simple model and method proposed here provide a
satisfactory description of the correlations between atomic fluctuations.
Furthermore, this is achieved within computation times at least one order of
magnitude shorter than commonly used molecular approaches.

Introduction
With increasing numbers of X-ray or NMR elucidated
protein structures, efforts have been directed to extracting
residue-specific potentials stabilizing native structures as
an important step towards solving the protein folding
problem (for review, see e.g. [1,2]). On the other hand,
some recent studies have suggested that simple energy
functions that incorporate the two most important charac-
teristics of amino acids, mainly hydrophobicity and hydro-
gen bond formation capacity, may adequately account for
the selection of some supersecondary structures or tertiary
folds in small proteins [3,4]. So, the question “how much
detail in interresidue potentials is needed for describing
the behavior of proteins at a given level of approxima-
tion?” has not yet found a unanimous answer. 

Recently, a single-parameter Hookean potential was
adopted for the pairwise interaction of all atoms in X-ray
crystallographic structures in a normal mode analysis
(NMA) of large-amplitude elastic motions [5]. This
approximation is based on a Gaussian distribution of inter-
atomic distances about their equilibrium values. The crys-
tallographic temperature factors obtained by this method
for G-actin bound with ADP and Ca2+ showed full agree-
ment with those obtained with a detailed potential intro-
duced by Levitt [6]. The simplicity of the postulated
single-parameter Gaussian model and its success in pre-
dicting results for a complex system may have far-reaching
consequences in understanding protein structures.

In the present report we show, by analyzing the Kirchhoff
adjacency matrix of nonbonded interactions, that a single-
parameter harmonic potential does successfully describe the
temperature factors and cross-correlations in folded pro-
teins. With the knowledge of the crystal structures only, and
adopting a single parameter per protein, we have satisfacto-
rily reproduced the temperature factors of the Ca atoms of
12 proteins from the PDB. The method is strikingly simple
and efficient: no knowledge of detailed residue-specific
potentials is required, and the time-consuming energy mini-
mization algorithms and molecular dynamics (MD) simula-
tions with complex potentials as in NMA of X-ray structures
[7–14] are avoided. Instead, a highly efficient analytical
method is used, which finds its roots in the elasticity theory
of random polymer networks [15–17]. 

The basic postulate adopted in the present study is that
the protein in the folded state is equivalent to a three-
dimensional elastic network. In the classic theories [15],
the junctions of the network undergo Gaussian-distributed
fluctuations under the potential of the pendant chains.
Here, the Ca atoms are identified with the junctions of the
network, and they fluctuate under the potentials of their
near neighbors. Thus, the interaction potential between
closely located pairs of Ca atoms substitutes for the har-
monic potential constraining the end-to-end separation of
the classic network chains. We note that in addition to
nonbonded interactions, the effect of chain connectivity is
also taken into account in the present theory, as the model
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automatically includes the constraints imposed by the first
neighboring Ca atoms along the backbone. 

Theory
Following the model network of randomly fluctuating junc-
tions postulated above, the fluctuations DRij in the separa-
tion Rij =Rj – Ri between the ith and jth Ca atoms in the
folded protein are assumed to obey a Gaussian distribution:

W(DRij) = (g*/p)3/2 exp(– g* DRij
2) (1)

Here, the normalization constant g* is the counterpart of
the single parameter in the Hookean potential adopted by
Tirion [5]. In the statistical theory of polymer networks, the
distribution function W(DRij) is substituted into the expres-
sion DA = – kBT lnW(DRij) for the elastic free energy change
associated with the fluctuation DRij in the end-to-end
vector connecting junctions i and j. This yields the har-
monic potential kBTg*DRij

2 and a Hookean force constant
equal to 2kBTg*. The latter replaces the single parameter C
used by Tirion. The configurational factor for a protein of N
residues may then be expressed, with analogy to the theory
of random Gaussian networks [15–17], by equation 2:

ZN = K exp( – {DRT} Γ {DR}) (2)

Here, {DR} is the N dimensional column vector formed by
the fluctuations {DR1, DR2, …, DRN} of the Ca atoms, the
superscript T denotes the transpose, K is a constant, and Γ
is a symmetric matrix known as the Kirchhoff or valency-
adjacency matrix [18] in graph theory. The elements of Γ
are given by equation 3:

The summation for evaluating Γii is performed over all off-
diagonal elements on the ith column (or row). rc is the
cutoff separation defining the range of nonbonded con-
tacts. The equilibrium correlation between the fluctua-
tions of two sites k and l is obtained from [16,17]:

where V = {DRT} Γ {DR} is the potential associated with
the vibrations of the Ca atoms, Z is the partition function,
the angular brackets designate the ensemble average over
all fluctuations, d{DR} ≡ dDR1 dDR2.....dDRN, and [Γ–1]kl is
the klth element of the inverse of Γ. Γ may be regarded as
the atomistic counterpart of the stiffness matrix in the
analysis of elastic bodies. The mean-square fluctuations of
the Ca atoms are readily evaluated from the diagonal ele-
ments of Γ–1 using 〈DRk

2〉 = [Γ–1]kk and the cross-correla-

tions between the fluctuations of the Ca atoms are found
from the off-diagonal entries of Γ–1.

Results and discussion
Comparison of predicted mean-square fluctuations with
crystallographic temperature factors 
Results from calculations for 12 proteins of different sizes
and structural classes (Table 1) taken from the PDB [19,20]
are displayed in Figures 1–3. Here, the mean-square fluctu-
ations of Cα atoms calculated from equation 4 are compared
with the Debye–Waller or temperature factors measured
for the same atoms by X-ray crystallography:

Bk = 8 p2 〈DRk ⋅DRk〉/ 3 (5) 

Results are plotted as a function of residue index k, 1 ≤ k ≤
N. The only adjustable parameter in our theory is g*,
which is determined by normalizing the theoretical distri-
bution with respect to the experimental, so as to match
the areas enclosed by the two curves in each figure. The
g* value used for each protein is listed in Table 1. 

In Figure 1, relatively small size proteins (40 < N < 90) are
considered (PDB codes are indicated in the figures).
Details of these structures are given in Table 1. In Figure 2,
intermediate size proteins (90 < N < 130) are presented, and
larger size proteins (N > 160) are displayed in Figure 3.

Despite the simplicity of the model and method, theoreti-
cal and experimental curves are found to be strikingly
similar. We note that B values include not only tempera-
ture-dependent vibrations of the atoms (as represented by
eq. 5), but also other effects such as static disorders [21].
Yet, most of the peaks and minima of the experimental
curves are accurately reproduced by the theory. 

A few general features follow from the examination of the
curves in Figures 1–3. Firstly, the more localized atoms,
i.e. those exhibiting relatively low B values, are generally
those participating in secondary structures, neighboring
disulfide bridges, etc. Thus, several portions of the distrib-
utions resembling parabolic forms may be identified with
a-helices or b-strands. Substrate binding regions are also
accurately predicted, in general. Secondly, chain termini
exhibit fluctuation peaks in several proteins due to their
inherent enhanced flexibility. Also, surface atoms gener-
ally exhibit larger fluctuations, compared to core atoms.
Thirdly, if the protein is a multimer, theoretical curves fall
above the experimental curves at the regions of
subunit–subunit interfaces, due to the absence of interac-
tions between neighboring subunits. For example,
residues 87–90, 134–151, 159–163 and 196–212 form the
contacting region of the subunits of the trimer purine
nucleoside phosphorylase (1ula) [22], which explains the
discrepancy between theory and experiments at these
specific regions. On the other hand, the theoretical curve

{ }

{ } { } [ ]
             = (1/ ) d          

d d         (4)

- /

/
/

D D D D D

D D D D

R R Z R R e R

R R e R e R

k l k l
V kT

k l
V kT

V kT

kl

⋅ ⋅

= ⋅ =

∫
∫ ∫−

−
−/ G 1

G
G

ij ij c

ij

ij c

i j R r
i j

i j R r

i j

= ≠
−

− ≠ ≤















≠

∑
0  if  and  >   

 if  =                                

* if    and   

              (3)

       g

174 Folding & Design Vol 2 No 3



in Figure 3d was obtained by taking into consideration the
two subunits (a total of 633 residues) of DNase I–actin
[23], which shows good agreement with experimental
temperature factors. Fourthly, in the present model, only
a-carbons are taken into consideration in evaluating root-
mean-square fluctuations. Constraints imposed by highly
specific sidechain–sidechain interactions are ignored. Con-
sequently, the fluctuations of the corresponding a-carbons
are overestimated. An example is the membrane protein
1omf. The channel-forming b-barrel in each subunit of
this porin is pointed out to have a constriction region that
is delimited by a row of three arginines, Arg42, Arg82 and
Arg132, and Lys16 [24]. The guanidinium groups of the
arginines are stacked and presumably have favorable p–p
interactions. This unusual cluster is further stabilized by
the sidechains of Asn64 and Glu62. These sidechains
determine the size limitation and ion selectivity of the
pore [24]. So, in this region, stability is imparted by
sidechains, and examination of the Ca atoms leads to an
underestimation of the constraints imposed by the specific
segregation of the pendant charged sidechains in the con-
striction zone, as may be verified from Figure 3c. 

In the interest of clarifying the differences in g* values of
different proteins, we did a systematic analysis of the
results obtained for the proteins listed in Table 1. This
indicated that g* increases with increasing secondary
structure content of the examined protein, and with the
size of the protein. These two factors have the common
effect of enhancing the fraction of residues with a high
packing density. Thus, the differences in the g* values of
different proteins originate from the differences in their
local packing density distributions. Those proteins offer-
ing a hydrophobic core with an efficient packing of
residues, or possessing a great deal of secondary structural

elements which constrain atomic fluctuations, generally
exhibit larger g* values. This is also consistent with the
fact that the root-mean-square fluctuations scale with g*–1. 

A further examination showed that the consideration of
larger ranges of interactions (i.e. taking rc > 7.0 Å) also leads
to an increase in g*. This may be attributed to the fact that
an increase in the interaction ranges automatically implies
an increase in the strength of constraints controlling atomic
fluctuations. And this leads to a decrease in the overall
amplitudes of motions reflected by higher g* values. 

Cross-correlations between atomic fluctuations
Figure 4 shows cross-correlations between the fluctuations
of Ca atoms obtained for trypsin inhibitor (5pti). Cross-
correlations are evaluated from the off-diagonal elements
of Γ–1, as outlined above. These are normalized with
respect to the auto-correlations as: 

The lower-left and upper-right triangular portions of the
correlation map display the correlated (C(k,l ) > 0) and the
anticorrelated (C(k,l ) < 0) pairs, respectively. Four equally
spaced contours are displayed in both parts, with respec-
tive values 0.21, 0.32, 0.43 and 0.54 for the correlated, and
–0.14, –0.18, –0.22 and –0.26 for the anticorrelated
regions. Innermost contours indicate regions with
strongest cross-correlations. 

Let us first consider the regions of the molecule undergo-
ing strongly correlated fluctuations, i.e. examine the
lower-left triangular portion of the map displayed in
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Table 1

Description of proteins examined in the present study.

PDB code* Size† Name Resolution (Å) Structural class g* References

1ltsc 41 Heat-labile enterotoxin 1.95 a 2.55 [35]
1crn 46 Crambin 1.5 — 0.99 [36,37]
5pti 58 Trypsin inhibitor 1.0 — 1.94 [38]
1aba 87 Glutaredoxin 1.45 a/b 1.71 [39,40]
1vaab 99 MHC‡ 2.3 b 3.00 [41]
1tho 108 E. coli thioredoxin 1.68 a+b 2.66 [42]
5rsa 124 Ribonuclease A 2.0 a+b 1.41 [43]
2ccya 127 Cytochrome c′ 1.67 a 3.95 [44]
3lzm 164 T4 lysozyme 1.7 — 2.05 [45,46]
1ula 289 Purine nucleoside phosphorylase 2.75 a/b 3.00 [22]
1omf 340 Matrix porin 2.4 b 3.91 [24]
1atna 373 DNase I–actin§ 2.8 — 2.70 [23]

*If there is more than one subunit, an extra letter designates the
subunit. †Number of residues. ‡MHC class I H-2Kb complexed with a
peptide antigen from vesicular stomatitis virus nucleocapsid protein.

§Calculations for the subunit A of endodeoxyribonuclease I complexed
with actin were performed by considering subunits A and D (a total of
633 residues) reported in the PDB.



Figure 4. As expected from chain connectivity, the posi-
tively correlated regions include the diagonal elements of
the map, and a few other regions indicated by the con-
tours. For example, two antiparallel b-strands,
Ile16–Asn24 and Leu29–Tyr35, correlate strongly. Like-
wise, a strong correlation is observed at the C terminus
among residues belonging to the helix extending between
Ser47 and Gly56. We note that these results are in perfect
agreement with those obtained by Levitt et al. [8] from
NMA of the same protein. For comparative purposes, we
marked on the map with ‘X’ signs the centers of the

regions that were reported by Levitt et al. to exhibit the
strongest correlations (C(k,l ) ≥ 0.6), omitting the diagonal
portions of the map.

Finally, the regions of the molecule exhibiting strong anti-
correlations, displayed in the upper-right triangular part of
the map, also show close agreement with those identified
by Levitt et al. [8]. The centers of the regions that were
found by NMA to be subject to the strongest anticorrelation
(C(k,l ) ≤ – 0.3) are again indicated by the ‘X’ signs [8]. Four
such regions were identified by NMA, three of which
conform with present calculations. Only the anticorrelation
between the fluctuations of the chain termini observed by
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Figure 1

Temperature factors (B factors) for (a) 1ltsc, (b) 1crn, (c) 5pti and (d)
1aba, as a function of residue index. Curves shown in bold are
obtained with the present theory, from the inversion of the Kirchhoff
matrices (eq. 3) corresponding to the four X-ray structures reported in
the PDB. Curves drawn as thin lines represent experimental data. See
Table 1 for the description of the proteins.

Figure 2

Temperature factors (B factors) for (a) 1vaab, (b) 1tho, (c) 5rsa and
(d) 2ccya. Curves shown in bold are obtained with the present theory.
Curves drawn as thin lines represent experimental data. See Table 1
for the description of the proteins.



NMA, indicated by the ‘X’ sign in the upper-right corner of
the map, could not be observed in the present analysis. 

In sum, the satisfactory agreement between the present
loci of cross-correlations and those extracted from NMA is
quite significant, in view of the greater simplicity and
computational efficiency of the present approach com-
pared to NMA/energy minimization algorithms with
complex atomic potentials. 

The effect of chain connectivity
The observed fluctuations of a-carbons result from the
additive contribution of two effects: chain connectivity, as

accounted for by the automatic inclusion of the first neigh-
boring a-carbons that are separated by approximately
3.8 Å into the adjacency matrix, and nonbonded interac-
tions between all residue pairs that are not necessarily
close along the backbone but are separated by ≤ 7.0 Å in
space. These two contributions may be separated from
each other by expressing the Kirchhoff matrix as the sum
of two matrices, as in equation 7:

Γ = Γnb + Γcc (7)

where the subscripts refer to the respective contributions
of nonbonded interactions (nb) and chain connectivity (cc).
Γcc is identical in form to the classic Rouse matrix [25] of
polymer dynamics. Its ijth element is defined as:

where dij is the Kronecker delta, and g* is chosen to be
identical to the one in equation 1. Without factor g*, Γcc is
also known as the Kirchhoff matrix of the circle graph
without chords [26]. 

[ ]Gcc ij ij i j i j= − −+ −g d d d* ( ), ,2 1 1                     (8)
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Figure 3

Temperature factors (B factors) for (a) 3lzm, (b) 1ula, (c) 1omf and (d)
1atna. Curves shown in bold are obtained with the present theory.
Curves drawn as thin lines represent experimental data. See Table 1
for the description of the proteins.

Figure 4

Cross-correlations C(k,l) between the fluctuations of Ca atoms k and l
evaluated for trypsin inhibitor (5pti) using equation 4. The lower-left
and upper-right triangular portions of the correlation map display the
correlated and the anticorrelated pairs, respectively. Four equally
spaced contours are shown in each region, with values of 0.21, 0.32,
0.43 and 0.54 for the correlated, and –0.14, –0.18, –0.22 and –0.26
for the anticorrelated regions. Innermost contours indicate regions with
strongest cross-correlations. ‘X’ signs indicate the centers of the
regions determined by Levitt et al. [8] to correlate strongly (C(k,l) ≥ 0.6
for the lower-left triangular and C(k,l) ≤ –0.3 for the upper-right
triangular parts). The axes represent the residue numbers.



Calculations were repeated by inverting Γnb and Γcc, sepa-
rately, and the distributions of atomic fluctuations
obtained from the individual matrices were compared
with those resulting from the inversion of the complete
adjacency matrix G. Γcc is identical in form for all proteins
and yields a parabolic distribution of the form (i – N/2)2

for the ith a-carbon of a protein of N residues, i.e. fluctua-
tions are largest at the ends of the protein and smallest at
the middle.

Γnb, on the other hand, is specific to the investigated pro-
teins, and its inversion is found to reproduce closely most
of the peaks and minima obtained with the total Kirch-
hoff matrix Γ. Figures 5 and 6 display, for example, the
distributions obtained for the smallest and one of the
largest size proteins examined here. The curves found
from Γnb and Γcc may be compared to the corresponding
theoretical curve obtained from the inversion of Γ for
each protein. It may easily be verified that Γnb plays the
major role in determining the resultant curve; however,
Γcc improves Γnb by either lowering the most pronounced
peaks at the inner regions of the chain or by perturbing
the terminal portions of the distributions in the required
direction.

Correspondence between the present approach and NMA
The analysis introduced above is closely related to the
NMA of elastic bodies. In order to establish the connec-
tion between the present treatment and NMA, we use the
eigenvalue decomposition both for the Kirchhoff matrix Γ
and for its inverse Γ–1: 

Γ = U L2 UT

Γ–1 = U (1/L2) UT (9)

where U is an orthogonal matrix whose columns are the
eigenvectors of Γ. L2 is a diagonal matrix whose entries l2

i
are the eigenvalues of Γ. The 3N dimensional column
vector Dr consisting of the fluctuations of the position
vectors along the eigendirections of Γ is:

Dr = UT DR (10)

The elements of the column vector Dr are referred to as
the normal coordinates in NMA [8,12]. Use of equations 9
and 10 in equation 4 leads to the classic mean-square fluc-
tuation along the normal directions:

〈Dr2
i 〉 = 1 / l2

i (11)

which is identical to the second moments of the amplitude
distributions in NMA [12]. The only difference is in the
definition of the eigenvalues l2

i. In NMA, the eigenvalue
problem is defined by the equation ΓU = H UΛ2, where H
is the mass matrix weighting the velocities in the kinetic
energy expression [8]. The present formulation may be
regarded as the zero frequency limit of NMA. A funda-
mental difference between NMA and the present
approach is that the latter requires the linearization of the
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Figure 5

Theoretical curves for the temperature factors (B factors) for the
smallest protein examined in the present study, subunit C of heat-labile
enterotoxin (1ltsc) [35]. Curves (a) and (b) are found from the
inversion of the matrices Γnb and Γcc, reflecting the contributions of
nonbonded interactions and chain connectivity effects, respectively.
Curve (c) is obtained by considering both nonbonded and chain
connectivity effects. 

Figure 6

Theoretical curves for the temperature factors (B factors) for one of the
largest proteins examined the matrix porin (1omf) [24]. Curves (a) and
(b) are found from the inversion of the matrices Γnb and Γcc, reflecting
the contributions of nonbonded interactions and chain connectivity
effects, respectively. Curve (c) is obtained by considering both
nonbonded and chain connectivity effects.



nonlinear potential energy expression around the equilib-
rium state while our Γ matrix is obtained directly from the
X-ray structure, and there is no need to know the poten-
tials in our case.

Conclusions
We compared the mean-square fluctuations of Ca atoms
obtained from the inversion of Kirchhoff matrices as 〈DR2

k 〉
= [Γ–1]kk with the temperature factors from crystallographic
measurements for 12 different proteins. These were
selected with reference to their sizes and structural
classes, so as to test the predictions of the theory against a
broad variety of protein structures. A remarkable agree-
ment between experiments and theory is demonstrated
without recourse to simulations and to detailed potentials.
The results are very significant because we use an over-
simplified potential, mainly a single-parameter harmonic
potential based on a Gaussian distribution of interresidue
distances about their native states. Thus, no specificity is
introduced, and backbone constraints are ignored apart
from the connectivity between successive a-carbons. 

It should be noted that the experimental temperature
factors derive from the rate at which the electron density
falls off from the corresponding maximum for each residue
[21,27]. A Gaussian decay function of the form f =
exp(– Br2) is used to fit the smearing out of the electron
density f. Here, r is a reciprocal lattice vector. The use of a
single B value for each residue as opposed to a six-parame-
ter tensor implicitly assumes an isotropic displacement for
that particular residue [27]. Thus, the importance of any
non-Gaussian effects cannot be estimated by the present
comparison. The presence of anharmonic fluctuations has
been reported by Garcia [28], in contrast to the previous
NMA of Noguti, Go and co-workers [11,29] in which 80%
of collective fluctuations in native proteins obey harmonic
potentials. We note that the recent NMA study by Tirion
[5] demonstrates that contributions to fluctuations from
nonlinearities in the potentials are negligibly small. A
direct evidence for this is provided by the superposition of
the temperature factor distribution curves obtained by
assuming a harmonic potential for all interacting pairs and
using the nonlinear residue-specific interaction energies
derived by Levitt et al. [8]. 

The success of a model based on a single-parameter inter-
action energy between all near-neighboring residues irre-
spective of the types of amino acids suggests that
residue-specific effects are of secondary importance in
maintaining the overall stability of a protein’s native state,
but instead a network of uniform interactions between all
residue pairs in contact satisfactorily account for the fluc-
tuations near the native state. This observation is in
perfect agreement with a recent analysis of the potentials
of mean force that stabilize native protein structures [30].
Therein, the interresidue interactions were expressed as a

sum of two contributions: a homogeneous part common to
all interacting pairs, and a residue-specific part accounting
for the departure of specific pairs from the homogeneous
behavior. Examination of databank structures revealed
that the first contribution, which may be viewed as a
generic characteristic of amino acids in native structures, is
stronger than the latter by a factor of five, i.e. a dominant
part of the potentials of mean force experienced by indi-
vidual residues is contributed by homogeneous (nonspe-
cific) interactions [30]. This result is consistent with the
observation that a single-parameter interresidue potential
yields an adequate description of fluctuations in the
present study. Thus, one might expect to have a single
force constant g* for all proteins, inasmuch as the latter is
representative of the homogeneous interresidue interac-
tions existing in all proteins in their native state. As men-
tioned above, deviations from a common value of g* are
partly due to differences in local packing densities in dif-
ferent proteins.

It should be noted that one may totally eliminate the vari-
able g* by normalizing both the experimental and theoret-
ical results. The experimentally observed absolute
amplitudes may indeed be affected by various factors,
including static disorder, temperature, or other environ-
mental effects. The relative mobilities of different
residues, rather than the absolute amplitudes of fluctua-
tions, are of interest in general. And the present Gaussian
model of fluctuations provides an excellent description of
the relative amplitudes of fluctuations of the individual
residues. 

The present model gives the zero frequency limit of con-
formational fluctuations in proteins. At this limit, biologi-
cal macromolecules behave like an elastic body [11,31].
The present model treats the elastic body as a collection of
points interacting with a single harmonic potential. Tor-
sional bond-stretching and bond-bending potentials are
not included in the model. Agreement of calculations with
experimental data justifies their omission. Even chain con-
nectivity represented by the matrix Γcc is of minor impor-
tance. The reason for the very good agreement between
experiments and our simple model based on Gaussian
fluctuations of interresidue distances in the native state is
that the dominant vibrational modes involve the coopera-
tive contribution of a large number of atoms. Averaging
over these numerous interactions demonstrates a univer-
sality due to the central limit theorem [32], irrespective of
the details buried in the individual pairwise interactions. 

The computation time for a given protein is limited by the
inversion of the Kirchhoff matrix. This time is several
orders of magnitude shorter than that for typical NMA and
MD simulations. For instance, for DNase I–actin with two
subunits A and D having a total of 633 residues, 9.4 min
CPU time is required for calculating both B factors and
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cross-correlations. Obviously, calculations are much faster
in the case of smaller proteins. For T4 lysozyme, for
example, which comprises 164 residues, a CPU time of
8.2 s is sufficient. These calculations are performed on a
Silicon Graphics Power Indigo workstation. Note that in
comparison with the CPU times reported by Tirion [5] for
NMA with energy minimization, the present computation
times are at least one order of magnitude shorter. 

Computations with the present model require a single
inversion of the N × N Kirchhoff matrix for a protein of N
residues. This forms another advantage of the present
model over the conventional computation methods,
mainly its applicability to proteins of any size.

It should be remembered that the theory relies on knowl-
edge of atomic coordinates or, more precisely, on the list of
residue pairs whose equilibrium Ca–Ca distance is lower
than a cutoff value, say 7.0 Å. These data are provided by
experiments. Determination of the atomic coordinates
from knowledge of amino acid sequence, on the other
hand, is a different and still unresolved issue which cannot
be solved by such simple harmonic potentials, but necessi-
tates the development and use of highly specific inter-
residue potentials cognate to models of different
complexities [30,33]. Yet, it would be challenging to test
the predictions of the present simple theory as applied to
partially known structures for which some distance
restraint data are available. Such data are provided by
NMR experiments, for example. Another interesting appli-
cation would be the characterization of type and strength
of correlations on a larger scale, such as those between sec-
ondary structural elements or between structural domains. 

In sum, the present study shows that, insofar as the corre-
lations between atomic fluctuations are concerned, a
single-parameter harmonic potential may be satisfactorily
adopted for each protein in its folded state. The tempera-
ture factors and equilibrium correlations between atomic
fluctuations predicted by the theory show very close
agreement with experimental observations or with results
of significantly more complex NMA or MD simulations.
And these results are computed very efficiently, at least
one order of magnitude faster than other atomic
approaches developed to date. 

Materials and methods
The Kirchhoff matrix for the protein under consideration is formed follow-
ing the definition given by equation 3. The cutoff separation defining the
range of nonbonded contacts rc is taken as 7.0 Å. This value is repre-
sentative of the distance range of interactions for pairs of nonbonded
amino acids in compact globular proteins [34]. All pairs of Ca atoms i
and j are taken into consideration in evaluating Γ, which automatically
incorporates the two terms Γnb and Γcc, contributed by nonbonded inter-
actions (|j – i| ≥ 2) and bonded neighbors (|j – i| = 1), residues being
indexed from 1 to N starting from the N terminus. Auto-correlations and
cross-correlations between the fluctuations of Ca atoms are evaluated
from the inversion of the Kirchhoff adjacency matrix, using equation 4. 

We note that the determinant of the Kirchhoff matrix is equal to zero,
and hence the matrix cannot be inverted directly. Instead, the matrix is
subjected to a similarity transformation and reconstructed after elimi-
nating the zero eigenvalue. Results are expressed in terms of the para-
meter g*, the value of which is adjusted for each protein (see Table 1)
upon comparison with experimental temperature factors, following
equation 5.
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