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9.3.1 Introduction: Protein Dynamics, Allostery and
Function

9.3.1.1 Structure-Encoded Dynamics of Proteins: A Major
Determinant of the Conformational Mechanisms
for Biological Function

In recent years, both experimental and computational studies

have invited attention to the relevance of the equilibrium

dynamics of proteins to the conformational changes that the

proteins undergo to achieve their catalytic function or allos-

teric signaling.1–8

The equilibrium dynamics refer to the collective motions

accessible near a global energy minimum. These are compu-

tationally assessed by the normal mode analysis (NMA) of

equilibrium structures.9 Biomolecular systems exhibit a broad

range of motions, from high-frequency fluctuations near

densely packed centers of energy localization to large-scale

domain or subunit movements, also called global motions,

which are several orders of magnitude slower. Importantly, the

latter most cooperative modes, usually at the low-frequency

end of the mode spectrum, are usually insensitive to structural

and energetic details but determined by the overall contact

topology, or fold, under native state conditions.10–12 Models

exclusively based on inter-residue contact topology, such

as elastic network models (ENMs),13–20 have thus found

widespread applications in molecular structural biology in

approximately the past decade due to their ability to accurately

predict these cooperative modes and thereby provide insights

into potentially functional changes in conformation while

being remarkably efficient from computational time and

memory standpoints. The theoretical foundations and

extensions of methods based on ENMs are presented in

Section 9.3.2.

Functional changes in structure vary over a broad range of

time- and length-scales, and they encompass a diversity of

events, from physical changes in structure required to recog-

nize and/or bind a substrate protein, ligand, or a DNA/RNA

segment to the collective machinery of large complexes and

assemblies (e.g., folding of an encapsulated polypeptide by a

chaperonin, processing of bound polynucleotides by DNA

polymerase or the ribosome, and maturation of viral capsids),

or to the chemical changes required for catalytic activity, post-

translational modifications, and degradation reactions. Several

examples of motions are presented in Section 9.3.3. Chemical

reactions usually require precise positioning of the reacting

groups and cofactors, if any, and NMAs with ENMs have

shown that amino acids near the catalytic sites usually incur

minimal change in their positions during the soft modes of

motions undergone by the enzyme.21 The same regions, while

being fixed in space, usually coincide with, or closely neigh-

bor, the global hinge sites that mediate the concerted move-

ments of the surrounding domains while being rigidly affixed

in space. Typical examples are cleft regions between two

domains, which usually contain the active site in many

enzymes and serve as global hinge centers. These regions

are therefore ‘translationally rigid’ but ‘rotationally flexible’

and allow for efficient conversion of chemical energy into

mechanical energy. They are referred to as ‘key mechanical

sites’ due to their critical role in mediating concerted motions.

Substrate recognition and binding sites, on the other hand,
usually have a dual character – comprising a highly mobile

segment (e.g., a recognition loop or subdomain) and relatively

constrained residues coupled to mechanically key sites – so as

to enable the long-term effects, also called allosteric effects,

induced by substrate binding. Depending on the type of

protein, substrate binding may be colocalized with the cata-

lytic site and/or occur at a remote region, called a hot spot. In

either case, it usually triggers a change in the structure and/or

dynamics of the protein so as to facilitate the biochemical

(e.g., catalytic) or biological (e.g., signaling) function of the

protein.

The key point is that the previously described functional

changes in the structure and dynamics of a given protein

are predominantly defined by the protein or by its three-

dimensional fold or contact topology.4,22,23 These so-called

intrinsic motions are indeed sampled by the protein even in

the absence of substrate/ligand binding. The protein, or bio-

molecular structure (composed of multiple proteins), is ‘pre-

disposed’ to undergo those changes that appear to be induced

upon ligand binding. This predisposition in favor of func-

tional changes in structure, consistent with the Monod-

Wyman-Changeux (MWC) description of allostery,24 is pro-

posed to be evolutionarily conferred; that is, structures may

have evolved to favor movements (soft modes) that are actu-

ally functional so as to efficiently achieve their function. The

applications in Section 9.3.3 illustrate this bridge between

functional movements naturally observed (e.g., those derived

from multiple X-ray structures for the same protein under

different functional states) and the soft modes of motion

predicted by ENM NMA to be intrinsically accessible to

the protein, being uniquely encoded in the native fold/

topology.22,25,26

Perhaps these concepts are best illustrated by a protein or

even a functional domain that is found to be highly ubiqui-

tous – the ATPase domain of the Hsp70 family of molecular

chaperones. The ‘chemical reaction’ site, which in this case is

the ATP hydrolysis site, is located at a central cleft region

between four subdomains. It also serves as a global hinge site.

Nucleotide binding residues at this site are severely con-

strained in the global modes. The binding of its co-chaper-

onin, the nucleotide exchange factor (NEF), involves the

immobilization of the (originally) most mobile region, sub-

domain IIB. The structural change stabilized upon NEF

binding is that along a soft mode accessible to the ATPase

domain in the absence of NEF binding.27 Supporting the

evolutionary significance of these structural and dynamic

features, ATP binding residues are highly, if not fully, con-

served. They cannot sustain any variability in sequence,

which would imply variations in structure, at a region where

there is a need for a precise proximity and orientation of

reactants to ensure chemical reactivity. NEF binding sites, on

the other hand, are sequentially variable. Their variation,

however, is not random but, rather, occurs in a highly corre-

lated way so as to ensure specificity.28 Such coupled sequence

and structural changes are discussed further in Section 9.3.4,

which also gives examples of extensions of ENM-based

methods to explore conformational changes between sub-

states using different variations and combinations of coarse-

grained (CG) models/methods and full atomic simula-

tions. This type of hybrid approach holds promise for
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simultaneously exploring the cooperative global dynamics of

large biomolecular systems while retaining atomic informa-

tion at functional sites.
9.3.1.2 Soft Modes Define Accessible Pathways of
Reconfiguration Near the Global Energy Minimum

The landscape view of the free energy surface near a global

minimum is now widely accepted as a conceptually helpful

description, consistent with the multiplicity of folding path-

ways and accessibility of an ensemble of conformers in a

multidimensional space of conformations.29,30

In principle, for a protein composed of N interaction sites

in a three-dimensional space, the conformational space has

dimensions of 3N, which can be conveniently expressed in

terms of 3N-6 internal and 6 external degrees of freedom. Each

degree of freedom is associated with an ‘axis’ in this space, and

the instantaneous state of the protein is described by a 3N-

dimensional vector, the elements of which represent each

point along these axes. The degrees of freedom could be the

Cartesian (x, y, z) coordinates of the individual sites or a set of

generalized coordinates such as the N-1 bond lengths, N-2

bond angles, and N-3 dihedral angles, plus six variables to fix

the absolute position and orientation in space, for a chain

molecule of N sites.

Suppose we are interested in examining the time evolution

of the conformational state of the protein. To visualize the

displacement of the protein in this 3N-dimensional space is

not practical. Instead, some representative variables, such as

the radius of gyration and the number of native contacts, are

usually selected to depict the time evolution of conformation

in a reduced space of two or three variables. Do these variables

provide a good description of the conformational state? What

would be the most representative variables if we are interested

in examining the equilibrium motions of proteins? The

answer is ‘the principal axes’ of motions, which are readily

determined by the NMA of the equilibrium structure. These

principal axes define the collective modes of motion.31 Each

mode thus collectively involves simultaneous changes in the

coordinates of multiple sites, hence its representation as a 3N-

dimensional (eigen)vector. Also, the complete ensemble of

modes (3N-6 of them in the absence of rigid body motions)

form an orthonormal basis set that spans the complete space

of conformational changes.

The mode space provides a complete description of col-

lective motions in the neighborhood of a global energy

minimum – here, the native state of the protein. In this

‘dynamic’ description of the energy landscape near the native

state, each mode can be viewed as a direction/path of energy

ascent away from the original energy minimum. Thus, the

protein enjoys 3N-6 different mechanisms of motions near the

native state, each in the form of a harmonic oscillator, with

some involving steep ascents in free energy and others invol-

ving softer ascents. Steep ascent directions correspond to high-

frequency modes because the curvature of the energy land-

scape along this mode directly scales with the squared fre-

quency of the mode. In contrast, soft ascent directions refer to

low-frequency modes. For a given energy to be dissipated, or

in the presence of a given perturbation, the molecule will
naturally tend to undergo the largest size displacement along

the first mode, succeeded by the second mode, and so on.

These global modes indeed explain the structural differences

experimentally observed between the alternative structures of a

given protein.22

molecular dynamicsThis chapter presents CG models and

methods that can be advantageously used to determine these

soft modes, or the collective changes in conformation most

readily accessible to biomolecular systems (see Section 9.3.2),

and it demonstrate the relevance of these soft modes to the

changes in conformations experimentally observed to be

exploited when the protein or biomolecular system performs

its function in the cellular environment (see Section 9.3.3).

The chapter then demonstrates that these movements are

closely related to the evolutionary selections of certain amino

acids as highly conserved residues or correlated mutations

sites (see Section 9.3.4).
9.3.1.3 Coarse-Graining: An Essential Tool for Exploring
Collective Dynamics

The contour plot in Figure 1 illustrates the projection of the

energy landscape near a native structure onto a two-dimen-

sional subspace spanned by two principal axes. The native

state is a macrostate composed of three substates – in this case,

S1–S3. Suppose S1 is the most stable (lowest energy) micro-

state. The NMA of this structure using a full atomic model with

a detailed force field would yield the two principal axes, p1

and p2. On the other hand, a CG description of the native state

energetics, which takes into consideration the outer contours,

would identify the principal axes P1 and P2. The ribbon dia-

grams in Figure 1 illustrate the conformational motions along

these two principal axes for a subunit of the bacterial cha-

peronin GroEL.

Two points are worth noting here. First, the directions of

global modes (or the eigenvectors representative of the softest

modes) obtained by either the detailed or the CG model show

minimal, if any, difference. This feature, originally noted by

Tirion,19 and confirmed since then in many studies,11,12,32,33 is

referred to as the robustness of global modes. In principle, the

two sets of principal axes (or unit directional vectors) need not

be identical. However, numerous applications have demon-

strated that they are practically indistinguishable. This is due

to the fact that the global modes are cooperatively determined

by the entire contact topology or native fold, and the level of

detail (structure or energetics) included in the model does not

practically alter the shape of the modes provided that the

topology of inter-residue contacts is rigorously accounted for.

Second, upon deforming the original state along the principal

modes of motions, one may encounter, or approach, substates

(e.g., S2 and S3) that are separated by relatively low energy

barriers. Such transitions require the passage over an energy

barrier, when examined at atomic resolution. However, coarse-

graining of the structure smoothens out the energy profile, as

illustrated in Figure 2, allowing for potentially sampling or

approaching alternative substates, despite the use of a linear

theory. Figure 2 displays two substates (T and R0) assumed by

the bacterial chaperonin GroEL subunits. As illustrated later,

calculations based on ENMs show that the transition T-R is
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Figure 1 Schematic view of the energy landscape near the native state projected onto the two-dimensional space of principal coordinates. The
native state is composed of three substates, S1–S3. The directions of the two softest (global) modes are depicted, based on the atomic NMA of
the lowest energy substate S1 (p1 and p2; dark red arrows) and based on the coarse-grained (CG) NMA of the native (macro)state represented
by the broader elliptical region (P1 and P2; transparent red arrows). The two sets of principal modes usually exhibit similar patterns. The ribbon
diagrams on the left and right illustrate the movements in the two modes for a subunit of the bacterial chaperonin GroEL. The diagrams are
color-coded from red (most mobile) to blue (most constrained, almost rigid). Image generated with the ANM web server141 and PyMOL. (The
PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC).
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Figure 2 Potential energy at various levels of resolution. Three different energy profiles are shown, corresponding to three hierarchical levels of
resolution. The lowermost curve refers to the most detailed (highest resolution) description of the structure, where several microstates (local
minima) m1, m2, m3, etc. are distinguished. The diagram at the lower right illustrates such an ensemble of microstates, in which all atoms are
explicitly displayed. At an intermediate level of resolution (middle curve), the ruggedness of the energy profile is considerably smoothed out to
observe two substates, illustrated here by the T (tense) and R0 (relaxed) forms of a given subunit (e.g., subunit A) in the chaperonin GroEL. The
fold and secondary structure are practically maintained between the two forms, whereas the relative rearrangements of the domains exhibit
differences. At an even lower resolution, the differences between the two substates may become indistinguishable, both being part of a global
energy minimum characteristic of the fold shared by the two substates. Image generated with UCSF Chimera.142

30 In Silico Coarse-Grained Approaches to Structural Dynamics and Function of Proteins and their Assemblies
essentially enabled by one global mode, intrinsically accessible

to the T state, modeled as a single energy minimum approxi-

mated by a harmonic potential at a CG scale.34

Another important advantage of coarse-graining is

the ability to examine long-time and large-scale biomolecular
processes, albeit at low resolution, that are beyond the scope

of full atomic (e.g., molecular dynamics (MD)) simulations.

Despite significant advances in computational technology, it is

still a challenge to explore biologically relevant timescales and

cooperative events by conventional simulations, hence the

MAC_ALT_TEXT Figure 1
MAC_ALT_TEXT Figure 2
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need for developing CG models and methods. In principle,

the level of resolution depends on the scale (length and time)

of the process being investigated. The use of low-resolution

models is justified when examining slow events during which

fast motions are averaged out. However, in many systems,

local events and global changes may be coupled, hence the

need for considering multiple levels of resolution in integrated

approaches, as elaborated later.
9.3.2 Elastic Network Models: Theory and Methods

9.3.2.1 Normal Mode Analysis: Basic Assumptions and
Methods

The internal energy V(q) of a molecular system of 3N degrees

of freedom (e.g., the x, y, and z coordinates of N interaction

sites/atoms) may be written as a series expansion around the

equilibrium state q0¼ [q1
0 q2

0 q3
0
y q3N

0]T as

VðqÞ ¼ Vðq0Þ þ
X

i

qV

qqi

� �0

ðqi � q 0
i Þ

þ 1

2

X
i;j

q 2V

qqiqqj

� �0

ðqi � q 0
i Þðqj � q 0

j Þ þ? ½1�

where the summations are performed over all coordinates,

and the superscript 0 refers to the equilibrium state q0. We

assume that the first term represents the zero level, and we

note that the first derivative of the potential is by definition

zero at q0. V(q) approximated to second order thus becomes

VðqÞ ¼ 1

2

X
i;j

ðqi � q 0
i Þ

q 2V

qqiqqj

� �
ðqj � q 0

j Þ ¼
1

2
DqTKDq ½2�

where Dq is the 3N-dimensional vector of the instantaneous

fluctuations, superscript T designates its transpose, and K is the

positive semidefinite matrix the ijth element of which is

Kij¼ [q2V/qqi qqj]
0. For a solid-like system, assuming that each

atom behaves as a harmonic oscillator, the collective dynamics

of the structure is governed by 3N equations of motion,

written in compact form as

Mðd2Dq=dt2Þ þ KDq ¼ 0 ½3�
(a) (b)

Figure 3 Three alternative representations of a given structure. Adenylate
diagram, (b) a ribbon diagramþ spheres at the a-carbon positions, and (c)
carbons and all pairs of nodes within a cutoff distance are connected (by h
M is a diagonal matrix composed of N super-elements (3� 3

matrices) along the diagonal, with each super-element being

equal to miI3, where mi is the mass of the ith atom and I3 is

the identity matrix of order 3. The solution to eqn [3] has

the form DqðtÞ ¼ aeiot , which upon substitution into eqn [3]

leads to

ð2o2M þ KÞa ¼ 0 ½4�

Premultiplication of eqn [4] by M� 1/2 and substitution of the

variables u¼M1/2a, l ¼ o2, and H¼M�1/2KM�1/2 leads to

the eigenvalue equation

lu ¼ Hu ½5�

NMA is the solution of this equation to obtain the 3N� 6

nonzero eigenvectors u(k) of the Hessian matrix H, along with

the corresponding eigenvalues, lk. u(k) is a 3N-dimensional

vector, the elements of which are organized in three-dimen-

sional vectors u1
(k), u2

(k), y un
(k), which represent the dis-

placements of the individual atoms away from their

equilibrium positions as the structure moves along mode k;

and the eigenvalue lk is the corresponding squared frequency.

lk scales with the curvature of the energy landscape along

mode k. Thus, the lower frequency modes (or global modes)

have a smaller curvature/stiffness, and they undergo larger

excursions from the energy minimum for a given energy

increase, hence their ‘soft modes’ attribute.
9.3.2.2 Gaussian Network Model

The Gaussian network model (GNM) is the simplest

ENM,14,16 inspired by the work of Tirion.19 In her seminal

study, Tirion showed that the global modes evaluated using a

detailed force field and those based on a purely harmonic

potential with uniform force constants between all atom pairs

(within an interaction range) are practically indistinguishable,

thus inviting attention to the insensitivity of these modes to

the details of interactions. Inspired by this observation, we

introduced the GNM, in which the structure is represented by

a set of nodes, representative of individual residues. Nodes are

connected by springs of uniform force constant, g, provided

that they are located within a cutoff distance of Rc. Figure 3
(c)

kinase (AK) (PDB code: 1AKE) structure is shown as (a) a ribbon
an elastic network model in which the nodes are identified with the a
armonic springs). Image generated with UCSF Chimera.142

MAC_ALT_TEXT Figure 3
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displays the GNM representation of adenylate kinase, along

with its ribbon diagram. The network nodes are located at the

positions of the a carbons. The nodes evidently undergo

Gaussian fluctuations DRi (1rirN) about their mean posi-

tions, hence the name GNM. The potential of the molecular

system is given in terms of the fluctuations DRi¼Ri�Ri
0 in

the position vectors of the nodes away from their equilibrium

(native state) positions Ri
0 as

VGNM ¼
Y

2

X
i

X
j;j4i

ð�GijÞ½DRj � DRi�2
#"

½6�

where DRi�DRj¼DRij is the change in the distance vector

between residues i and j, and G is the Kirchhoff (or connectivity)

matrix, the off-diagonal elements of which are defined as Gij¼ –1

if the distance 9Rij9rRc and zero otherwise, and the diagonal

elements are evaluated from the summation Gii¼ –Rj Gij over all

off-diagonal elements in the ith row (or column). Following the

original statistical thermodynamics theory of random polymer

networks,35 the cross-correlations between the fluctuations of

residues i and j are found from the statistical mechanical average

DRi � DRjS ¼
Z
ðDRi � DRjÞexp �VGNM

kBT

� �
d DRf g

�

Z
exp �VGNM

kBT

� �
d DRf g ¼ 3kBT

Y
½C�1�ij ½7�

where [C–1]ij is the ijth element of C–1, kB is the Boltzmann

constant, and T is the absolute temperature. Note that the

determinant of C is 0; that is, C cannot be inverted. Instead, its

pseudo-inverse is evaluated using the N� 1 nonzero eigen-

values sk and eigenvectors v(k) of C. In compact notation, the

covariance between residue fluctuations is thus given by a

weighted sum of the N� 1 nonzero modes as

CðNÞ ¼ 3kBT

Y
C�1 ¼ 3kBT

Y

XN�1

k¼1

½s �1
k vðkÞvðkÞT � ½8�

where C(N) is a symmetric N�N matrix, the ijth element of

which is Cij
(N)¼/DRi �DRjS, and the ith diagonal element

Cii
(N) is simply the mean-square (MS) fluctuation /(DRi)

2S
of residue i. The contribution of any subset of modes to

cross-correlations or MS fluctuations may be evaluated by

performing the summation in eqn [8] over this particular

subset. Evidently, the soft modes (smallest eigenvalues)

make the largest contribution to the covariance. The eigen-

vectors are normalized such that the plot of [v(k)v(k)T]ii as a

function of residue i represents the probability distribution

of residue fluctuations in mode k, also called the kth mode

profile.
9.3.2.3 Anisotropic Network Model and Its Hierarchical
Coarse-Graining

The anisotropic network model (ANM)13,15 is an ENM that

provides information on the directionality of residue fluctua-

tions. ANM analysis is essentially a CG (residue-level ENM-

based) NMA, also proposed independently by Tama and

Sanejouand.18 The structure is represented as a network in

which the distances between residues (as opposed to the
distance vectors in the GNM; see eqn [6]) are constrained by

harmonic springs of uniform force constant. The N interaction

sites are located at a carbon atoms. We note a first, residue-

level ENM NMA has been proposed by Hinsen et al.17,36 A

distance-dependent function has been adopted for the force

constant in Hinsen’s model, consistent with the weakening of

atomic attractions with distance. Cutoff distances of RcZ13 Å

have been adopted in previous applications of the ANM. The

ANM potential energy is a summation over all harmonic

interactions in the structure

VANM ¼
Y

2

X
i

X
j

hðRc � RijÞðRij � Rij
0Þ2 ¼ 1

2
DRTHDR ½9�

where Rij and Rij
0 are the instantaneous and equilibrium dis-

tances between nodes i and j, respectively. h(Rc�Rij) is the

Heaviside step function that is equal to 1 if RcZRij. DR is a

3N-dimensional vector of the positional fluctuations of the N

residues, DRT is its transpose, and H is the (3N� 3N) Hessian

or force constant matrix (see Section 9.3.2.1). Note that in the

ANM, H¼K, and M is taken as identity matrix of order N. By

performing an orthogonal transformation of the (3N� 3N)

Hessian matrix (see eqn [5]), the overall motion can be

expressed as a sum over the (3N� 6) normal modes, with

the six zero eigenvalues corresponding to the translation and

rotation of the whole molecule. The global deformation

driven by a specific mode k can be determined from the

corresponding 3N-dimensional eigenvector u(k). The diag-

onalization of H becomes computationally exhaustive for a

supramolecular system such as the ribosome. For this purpose,

computationally efficient software package BLZPCK37 with

block Lanczos algorithm38 is used to solve the eigenvalue

problem for a number of collective modes.

Using the notation introduced in Section 9.3.2.1 and

identical unit mass for each residue (mi¼ 1 for all i) in resi-

due-based coarse-graining, the MS fluctuation of the ith resi-

due is given by

/ðDRiÞ2S ¼ ðkBT=YÞ
X

k

9uðkÞi 92

lk
½10�

The force constant g is the only adjustable parameter in both

the GNM and the ANM, whose value is usually determined based

on the experimental B-factors. The value of g does not affect the

mode profile (i.e., the eigenvectors) but uniformly rescales the

frequencies. Therefore, the relative sizes of the MS fluctuations of

residues in the different modes are not dependent on the choice of

g. On the contrary, they are uniquely defined by a given contact

topology or by the ENM.

The vast majority of ENM studies adopt this one-node-per-

residue description – that is, a residue-based coarse-graining of

the structure. However, there are interesting applications of

lower resolution models – that is using renormalization

techniques – which will be discussed next.

Soon after the introduction of ANM, a hierarchical coarse-

graining methodology was proposed that is described here

via its application to hemagglutinin A (HA), which is a

homotrimeric integral membrane protein of the influenza

virus.12,39 Each monomer comprises two different chains

linked by disulfide bridges (Figure 4(a)). The lower part of the
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Figure 4 Hierarchical coarse-graining of hemagglutinin A. (a) The X-ray structure of influenza virus hemagglutinin A (HA; PDB code: 2HMG)
determined at 3-Å resolution143,144 indicates that the ectodomain of the trimeric protein folds into a coiled-coil stem region supporting three
receptor binding globular domains (monomer shown in red). (b) Hierarchical coarse-graining of HA structure, where each node/segment contains
n¼ 10 residues along the chain sequence. (c) The mean radius of gyration of segments in folded proteins as a function of segment size n, used
for calibrating the cutoff distance of interaction in CG ANMs. (d) and (e) Twisting motion along the cylindrical axis of HA in the first mode for the
original (n¼ 1) and a low-resolution (n¼ 10) ANM. Harmonic deformations from the native structure are exaggerated for clarity. (f) Similar first
mode shapes at two levels of resolution – that is, normalized distribution of the squared displacements of residues in the softest mode, obtained
for n¼ 1 and n¼ 10, in support of the applicability of the coarse-graining n¼ 10. See Doruker et al.12,39 for more details. Image generated with
PyMOL.
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molecule is the membrane proximal region, and the top part

contains the receptor binding sites.

In general, a protein composed of N residues can be further

coarse-grained to s segments/nodes, each representing n residues.

In a simple scheme (Figure 4(b)), HA composed of N¼ 1509

residues has been coarse-grained at different levels (n¼ 2, 10, 20,

40) by retaining every (nkþ 1)th residue along the linear sequence

of the backbone (k¼ 0, 1, 2, y). The residue-based Rc (B13 Å)

needs to be scaled for n41 to generate an intact network with

proper connectivity. For this purpose, the radius of gyration (Rg)

calculated for segments of various lengths in folded proteins

(Figure 4(c)) has been utilized to determine the cutoff radius39

Rc ¼ 2Rg þ 13Å ½11�

Once the cutoffs for different levels of resolution are fixed, the

corresponding force constants can be determined so as to

(uniformly) scale the computed B-factors to match the average

value observed in experiments. Notably, the MS fluctuations of
residues display similar trends as the original (n¼ 1) model,

even for very low resolutions (nZ10). More important, the

first (second) mode shapes indicate excellent fits to the ori-

ginal model with linear correlation coefficients above 0.9

(0.8), up to n¼ 40. The first mode shapes of HA are compared

for n¼ 1 and n¼ 10 (Figure 4(f)). The features of the vibra-

tional frequency distribution are very similar at the lower end

of the spectrum. Hierarchical coarse-graining has also proven

useful for exploring the collective dynamics of larger proteins

with different topologies, namely tetrameric b-galactosidase

(N¼ 4092) and dimeric xanthine dehydrogenase (N¼ 2664).

HA serves two essential functions: the binding of influenza

virus to target cells and the fusion of viral and endosomal

membranes. Visual inspection of the slowest mode deformations

indicates consistent behavior in terms of the collective motions

of HA for different n values. The first mode (Figures 4(d) and

(e)) is a twisting motion along the cylindrical axis of HA, which

has been related to HA’s function during membrane fusion –

that is, fusion pore opening by the cooperative action of
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clustered HA molecules.40 The second and third modes represent

a hinge-bending motion about the same site halfway along the

cylindrical axis, where the deformation directions of the two

modes are complementary in terms of the cylindrical symmetry

of HA. Such a bending motion has been proposed to serve for

the close association of viral and target membranes prior to

fusion.41,42

Another simple route to mimic the intact protein structure

is to build an on-lattice model with a uniform density

distribution. When the simple cubic lattice sites that fall

within 4 Å of HA’s a carbon atoms are retained for

further ANM calculations with cutoff adjustments,43 the col-

lective modes for HA present a consistent picture with the

original, off-lattice model. In summary, the primary determi-

nant of global dynamics is clearly the overall shape because it

is the only distinguishing factor among on-lattice representa-

tions of different folded structures besides possible cavities

within.
9.3.2.4 Mixed Resolution Models

Computational efficiency gained by hierarchical coarse-grain-

ing is crucial especially for its application to supramolecular

assemblies such as the ribosome. However, details at the ato-

mistic level, or at least at the residue level, of the mechanisms

would still be desirable for the region of interest, such as those

at the active site of an enzyme (e.g., the decoding center and

peptidyl transferase centers for the ribosome). Thus, the

motivation behind the mixed resolution models is to retain

high-level detail for the ‘interesting’ regions and at the same

time to increase the computational efficiency by describing the

rest of the structure at lower resolution. Therefore, the system

is composed of a mixture of high-resolution (HR; atomistic or

residue-based with n¼ 1) and low-resolution (LR; residue-

based or lower resolution with n41) nodes. Here, the critical
lr node 1

m � 

� 

� 

� 

� 
Atomistic (hr) re

Figure 5 Mixed resolution model. The force constants between any pair o
pairs of heavy atoms in the high-resolution (hr) region (either amino acids
In the low-resolution (lr) region, nodes may represent one or a group of res
via multiple springs ðmgÞ, where m is the total number of atomic pair inter
residing in the same node are not included in the count). Image generated
step is the determination of cutoff radii and force constants for

the interactions between the different-sized node pairs – that

is, HR-HR, LR-LR, and LR-HR pairs.

If the HR regions are modeled at the residue level and the

rest at lower resolution,44 the cutoffs for LR-LR interactions

(n41) can be based on eqn [11]. The force constants

and cutoffs for the interface between the HR and LR regions

need to be determined by empirical rules. On the other hand,

to model the HR region atomistically with the remaining

regions at residue level, the atomic cutoff could be adjusted

so as to match the lower end of the frequency distribution

from atomistic and residue-based ANMs. In this approach,

the atomic cutoffs have been found to be system-size

dependent, varying from 6 to 9 Å for relatively small pro-

teins.45 Although this approach satisfactorily described the

collective dynamics for HA and triosephosphate isomerase

(TIM; discussed later),44,45 the system-size dependence of

the parameters and the empirical rules employed are major

drawbacks, especially for supramolecules such as the

ribosome.

This has led to a more universal approach that is applicable

to all system sizes and composition, including protein, DNA,

RNA, and possibly other components.46 Here, a single atomic

cutoff is chosen as the basis for all pairwise interactions

independent of node size. Heavy atom pairs (HR-HR interac-

tions) are connected with a uniform spring constant, taken as

unity. In the LR region, one node may represent one or mul-

tiple consecutive amino acids/nucleotides, necessitating the

use of larger force constants to link the heavier nodes. The

force constant between two nodes (LR-LR or LR-HR) is

therefore taken equal to the total number of interacting atom

pairs among them (Figure 5).

In all mixed resolution methods, the Hessian matrix H is

mass weighted, equating the total mass of each node to mi (in

eqn [3]). In the universal approach, an atomic cutoff distance
lr node 2

gion

f nodes are determined based on atomic cutoff radius. All neighboring
or nucleotides) are linked by a uniform spring (with force constant g).
idues, and any CG node pair (here, lr node 1 and lr node 2) is linked

actions among the nodes that fall within the atomic cutoff (atom pairs
with PyMOL.
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of 10 Å is preferred to avoid extreme mobility of solvent-

exposed tip residues with few neighbors (low connectivity).

The similarity between two normalized eigenvector sets v(i)

and w(j) from independent ANM calculations can be deter-

mined using terlap definition47

Overlap ¼ 1

k

Xk

i¼1

Xk

j¼1

ðvðiÞ � wðjÞÞ2
 !1=2

½12�

A subset of low-frequency modes (e.g., k¼ 10) are con-

veniently used for a comparison of the collective dynamics.

The single atomic cutoff of 10 Å has been valid using uni-

formly coarse-grained TIM models, which exhibit an overlap

of 0.94 between the original, residue-based (Rc¼ 13 Å) and

the atom-based cutoffs.45 Mixed resolution models (n¼ 1 or

n¼ 5 for LR region) for TIM have also produced quite satis-

factory overlap values (greater than B0.9) with the residue-

based models. Additional validation of mixed resolution

models has been performed by performing classical NMA and

MD simulations on TIM.45,48

Mixed resolution methodology has been particularly

useful in exploring the functional motions of the ribosome.

In Wang et al.’s original ANM analysis of the ribosome,49

nodes of the network were located at the Ca and P atoms of

the amino acid (aa) and nucleotide (nu) residues, respec-

tively. The interaction distance between Ca2Ca pairs was

taken as 15 Å and for Ca2P and P–P pairs as 24 Å in the

uniform ANM because more distant sites necessitate the use

of larger cutoff distances.12,39 Ribosome collective dynamics

using the single atomistic cutoff of 10 Å for all interactions

produced a quite satisfactory overlap of 0.72 with the original

residue-based model described previously. Adjustments in

the atomic cutoff parameters for the ribosome model

(respective values of 10, 13, and 15 Å for the aa-aa, aa-nu,

and nu-nu pairs) increased the overlap to 0.87. In the mixed

resolution modeling of the ribosome structure, the HR region

was selected as the codon and anticodon areas of mRNA and

tRNAs at the A and P sites and the decoding center A1492,

A1493 residing on 16S rRNA of the small subunit, which

resulted in almost perfect overlap (0.99) with the residue-
(1)RA

(1)vA

(2)RA

(2)vA

(0)
RA

A

Figure 6 Schematic description of the sampling of the transition paths be
Both substates are modeled as ENMs. An iterative scheme is adopted, in w
reconfigurations (vA

(1), vA
(2), y and vB

(1), vB
(2), y) to successively reduce

one or more soft modes. Intermediate pairs of conformations generated alo
See the text and Yang, Z.; Majek, P.; Bahar, I. Allosteric transitions of supra
chaperonin GroEL. PLoS Comput. Biol. 2009, 5, e1000360, for more details
based model.46 Thus, atomic-level details have been obtained

for this specific region of interest and for another antibiotic

binding site.46 More details on the residue-based ribosome

models are presented later.
9.3.2.5 Adaptive ANM Methodology

The characterization of the transition mechanism between

conformations is difficult, both experimentally and compu-

tationally, due to the transient nature of the intermediate,

high-energy conformers crossed as the molecule undergoes the

transition. In many cases, only the two ending structures are

known from experiments.50 Furthermore, the passage between

the two endpoints does not necessarily involve a single path-

way but, rather, multiple pathways. Obtaining a molecular

understanding of the most probable transition pathways

between the two end structures is a challenging task in the case

of large systems in particular.51,52 On the other hand, studies

indicate that the global transitions proceed, or at least start,

via the collective global mode directions that are predicted

by NMA. Several ANM-based studies indeed suggest that

conformational changes may be described to a good approx-

imation in terms of a few slow modes.4,18,20,36,49,53–57 How-

ever, given that NMA is valid only in the local region

surrounding a potential energy minimum, its application to

nonequilibrium events is possible only upon suitable coarse-

graining of the energy landscape so as to eliminate/overcome

low energy barriers that separate the substates (see

Section 9.3.1.3).

Considering these caveats, the authors introduced a metho-

dology called adaptive ANM (aANM), which utilizes the ANM

modes to guide the motion of the biomolecular system along the

directions intrinsically favored by its instantaneous inter-residue

contact topology.34 The essence of the method is to reevaluate the

ANM modes at each step, as the structure reconfigures along the

soft modes, hence the name adaptive. Details of the methodology

may be found in the original study.34 In brief, the aANM method

consists of the following steps (Figure 6): Two sets of inter-

mediates are generated, starting from both endpoints, A and B.

The recurrence equation for evaluating the kth intermediate
d (0)

(0)
RB

(1)
RB

(1)vBd (1)

(2)RB

(2)
vB

B

tween two substates A and B using the adaptive ANM methodology.
hich the two end structures (RA

(0) and RB
(0)) undergo stepwise

the original difference vector d(0). The steps are undertaken along
ng the pathway are designated as (RA

(1), RB
(1)), (RA

(2), RB
(2)), etc.

molecular systems explored by network models: Application to
. Copyright by PLoS ONE.
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starting from state A is

R
ðkÞ

A ¼ R
ðk�1Þ

A þ v
ðkÞ

A

¼ R
ðk�1Þ

A þ s
ðkÞ

A

Xm ðkÞ
A

i¼1

ðdðk�1Þ � ½u ðiÞA �
kÞ½u ðiÞA �

ðkÞ ½13�

For simplicity, the variables for state A are defined here, and

similar expressions hold for state B: [uA
(i)](k) designates the

normalized displacements (eigenvector) corresponding to the

ith mode evaluated at the kth step for the conformation

RA
(k� 1), mA

(k) is the number of (low-frequency) eigenvectors

(1rirmA
(k)) that contribute to the displacement vA

(k) at step

k, and d(k�1) is the instantaneous (at step k� 1) difference

vector between the two endpoints (starting from the original

distance vector of d(0)¼RB
(0)�RA

(0)). The contribution of a

given mode i to the displacement vA
(k) is proportional to the

projection (d(k�1). [uA
(i)](k)) of the instantaneous distance

vector onto the eigenvector [uA
(i)](k), and sA

(k) is a parameter

that scales the step size. sA
(k) and sB

(k) are simultaneously

selected at each iteration k as a fraction f of those, sA,m
(k) and

sB,m
(k), that minimize d(k). The limit f-0 refers to infinitesi-

mally small displacements that are strictly accurate but pro-

hibitively expensive (computationally), whereas the other

extreme case f-1 is the most efficient move but may give rise

to unphysical deformations in structural coordinates. Selected

f¼ 0.2 in our work as a scaling factor that optimally balances

between efficiency and accuracy.34 The number mA
(k) is based

on a threshold squared cosine, Fmin, that defines the maximal

angular departure between the instantaneous displacement

direction and that targeted. To this end, we evaluate the

cumulative squared cosine at each step k,

½Cðm ðkÞ
A Þ�

2 ¼
Xm ðkÞ

A

i¼1

cos2ðdðk�1Þ; ½u ðiÞA �
ðkÞÞ ½14�

and we select the minimal number of modes, starting from the

low-frequency end of the spectrum, that satisfy the inequality

[C(mA
(k))]2

ZFmin. Note that C(mA
(k)) is identical to the cor-

relation cosine between the instantaneous deformation and

distance vectors34 – that is,

Cðm ðkÞ
A Þ ¼ cosðdðk�1Þ; v

ðkÞ
A Þ ½15�

Therefore, the threshold Fmin ensures the selection of the

smallest subset of modes to drive the deformation vA
(k) of the

molecule toward a direction that does not deviate by more than

a specified correlation cosine (Fmin
1/2) from the target direction

d(k – 1). The use of the complete set of modes leads, by defi-

nition, to C(3N� 6)¼ 1. By selecting a subset, we let the

molecule undergo a structural change that is not necessarily

toward the endpoint but, rather, along the soft coordinates

energetically favored by its fold. Overall, the aANM thus

involves two parameters, Fmin and f. The former controls the

direction of motion, and the latter controls its size. Smaller Fmin

values permit us to proceed via lower energy ascent directions,

at the cost of longer excursions; smaller f implies more con-

servative displacements at each step. This scheme is repeated to

generate a series of intermediate conformations until the root-

mean-square deviation (RMSD) between the intermediates
becomes sufficiently small (comparable to the resolution of the

structures). The total number of iterations, ktot, is thus defined

by this targeted RMSD. The application of aANM to the allos-

teric transitions of GroEL is discussed later.
9.3.3 Applications to Allosteric Systems and
Supramolecular Machines

9.3.3.1 Correlation between Experimentally Observed
Structural Changes and ANM Modes

9.3.3.1.1 Principal component analysis of structural
ensembles

Bakan and Bahar performed a comparative study of the global

modes of motions indicated by experiments and those pre-

dicted by the ANM to make an assessment of the level of

correlation between computational predictions and the

changes in structures observed experimentally.22 The analysis

was performed for a few proteins (HIV-1 reverse transcriptase

(RT), p38 MAP kinase, and cyclin-dependent kinase 2) that

have been crystallographically resolved in multiple functional

forms. For example, there are more than 100 structures for RT,

determined in the presence of various inhibitors, in the

unbound form, or in the DNA-bound form. The authors also

considered a few proteins (e.g., ubiquitin and calmodulin) for

which multiple models have been determined by nuclear

magnetic resonance (NMR) spectroscopy. The ensemble of

structures experimentally (X-ray or NMR) determined for a

given system was subjected to a principal component analysis

to determine the corresponding dominant directions of

structural changes P1, P2, and P3 in the 3N-dimensional

space. In parallel, one representative structure from each

ensemble was selected to perform an ANM analysis and

determine the global modes/eigenvectors, u(1), u(2), y, u(k).

Comparative analysis with dominant modes of motions from

experiments and computations revealed a striking correlation

between the two sets. A similar analysis performed by Jernigan

and collaborators for HIV-1 protease also indicating the same

behavior: The different forms observed in experiments for a

given protein are essentially conformational variations along

the softest modes of motions that are readily available to the

native fold, and these modes can be accurately predicted by

CG NMA.25 The following sections provide more details for

four systems (domains, enzymes, and molecular machines)

the allosteric dynamics of which is critical to cellular func-

tions: the ATPase domain in the Hsp70 family of molecular

chaperones, the chaperonin GroEL, the enzyme TIM, and the

ribosome as the major factory of protein synthesis.

9.3.3.1.2 Interaction of Hsp70 ATPase domain with
nucleotide exchange factors

The Hsp70 family of 70-kDa heat shock proteins is a ubiqui-

tous group of molecular chaperones that plays a crucial role in

regulating the correct folding and intracellular trafficking of

proteins: It binds nascent polypeptide chains and prevents

their unwanted aggregation, especially under exposure to heat,

stress, or toxic agents, or directs them to cellular biodegrada-

tion pathways.58–60 Two widely studied members of this

family are the Escherichia coli DnaK and the human Hsp70.
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Figure 7 Comparison of experimentally observed and computationally predicted structural changes for the Hsp70 ATPase domain. The
experimentally observed changes are illustrated for the NEF-bound and free forms of the Hsp70 ATPase domain (respective PDB files 1HX162 and
1HPM145 corresponding to the BAG-bound and free forms of eukaryotic chaperone). Computational results are obtained by applying the ANM to
the two structures. (a) Structural alignment of NEF-bound and -unbound states of the ATPase domain. The ATPase domain structure is colored
by subdomains: IA (red; residues 1–39 and 116–188), IB (blue; residues 40–115), IIA (green; residues 189–228 and 307–385), and IIB (orange;
residues 229–306). The unbound ATPase fragment is shown in the foreground, whereas the NEF-bound form (1HX1) is shown in the
background. The regions showing the largest deformation are marked by arrows. (b) Results for the unbound (black curves) and BAG-bound (red
curves) ATPase domain. The solid thick curves represent the correlation cosine between the experimentally observed structural deformation
(between the NEF-bound and -free forms) and the softest 20 ANM modes accessible to the NBD. The thin curves with the circles describe the
cumulative overlap, summed over subsets of modes. The results show that a subset of six slow modes accessible to the unbound form ensures
the passage to the NEF-bound conformer with an overlap of 0.85. The NEF-bound form exhibits an even stronger potential to be reconfigured
back to its closed form, consistent with the preferred conformation of the NBD in the absence of NEF: The two top ranking modes yield a
cumulative overlap of 0.87 with the experimental deformation vector.68 The ribbon diagram was generated with PyMOL.
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Hsp70 proteins are composed of a nucleotide binding

domain (NBD), also called ATPase domain, and a substrate

binding domain (SBD). The NBD is composed of four sub-

domains (Figure 7(a)): subdomains IA, IIA, IB, and IIB. The

substrate binding affinity of the SBD is regulated by the ATPase

domain via the allosteric ATPase cycle.58 In the absence of

substrate binding, the NBD is usually in the ATP-bound state.

Substrate binding stimulates the hydrolysis of ATP (which is

enhanced by the assistance of co-chaperones, known as J

proteins). ATP hydrolysis provides the energy needed for

subsequent conformational changes that assist in processing

the bound, partially folded polypeptide. This process is ter-

minated upon binding of a NEF, another co-chaperone, to the

ATPase domain. NEFs stabilize an open conformer of the

ATPase domain (Figure 7(a)),61,62 thus facilitating the release

of the product (ADP) from ATP hydrolysis, as well as the

insertion of a new ATP molecule.63

Although the precise geometry of complex formation with

the NBD varies among different types of NEFs – namely,

GrpE,64 BAG,65 HspBP1,66 and Sse167 – they all share some

common features, including the recognition of subdomain IIB

and the stabilization of an open conformer to facilitate ADP/

ATP exchange.68 The structural change ‘apparently induced’

upon NEF binding has been shown by both NMR experi-

ments27 and molecular computations68 to be an intrinsic fea-

ture of the ATPase domain structure. NEF binding essentially
exploits the predisposition of the ATPase domain to undergo a

conformational transition to the open form. An unambiguous

verification of this property is provided by comparing (1) the

experimentally observed structural change d(0) between the

NEF-free and NEF-bound forms of the NBD and (2) ANM-

predicted global modes of deformation, intrinsically accessible

to the NBD in the absence of NEF binding.68 The results are

presented in Figure 7(b). The top-ranking 20 ANM modes at

the low-frequency end of the mode spectrum calculated for

unbound NBD are compared with the 3N-dimensional

deformation vector d(0) found from optimal structural align-

ment69 of the open (NEF-bound state) and closed (unbound)

conformations. The ordinate displays the correlation cosine,

u(k). d(0)/9d(0)9, between each mode u(k) (k¼ 1, 20) and d(0)

and also the cumulative overlap (Sk cos2(d(0), u(k)). Strikingly,

the third ANM mode exhibits a correlation cosine of 0.62,

alone, with the deformation vector. This number is remarkably

high, given that a randomly selected 3N-dimensional vector (as

a control) would, by definition, yield a correlation cosine of

(1/3N)1/2¼0.029 in the current case of N¼ 380 residues in

NBD. Thus, mode 3, which is intrinsically accessible to the

NEF-free NBD, exhibits a 200 times stronger correlation with

experimental deformation compared to a random 3N-dimen-

sional directional vector.

ANM calculations were repeated with the open con-

formations as well to examine whether the open structure of
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the ATPase domain, observed in the presence of NEF, has a

tendency to restore its conformation back to the closed form

in the absence of NEF. Results displayed in Figure 7(b) show

that the ANM slow modes sampled in the open form have

even higher correlations with d(0); mode 2 exhibits a correla-

tion cosine of 0.85, and the first two modes contribute

approximately 77% toward the overall cumulative overlap.

These results provide evidence for the strong intrinsic ten-

dency of the open form to change back to the closed form in

the absence of NEF.

Overall, the previous analysis shows that a small subset of

slow modes is exploited by the NBD to optimize its interac-

tion with NEF. The NBD appears to have structurally evolved

to favor the collective conformational changes that are

required for its biological activity.
9.3.3.1.3 Triosephosphate isomerase
TIM is a crucial enzyme in the glycolytic pathway catalyzing

the interconversion between dihydroxyacetone phosphate
(a)

(c)

(b)

(d)

Figure 8 Triosephosphate isomerase dynamics. (a) Aligned X-ray structure
loop 6 in open (red) and closed (blue) conformations, respectively. The liga
reaction intermediate.146 Active site residues are Lys13 (orange), His95 (gre
the first mode of the mixed resolution model emphasize that the loop openi
collective dynamics (a counter-rotation of the subunits indicated by arrows)
nodes is 1290/323. Loop 6 is red and active site residues are blue in both c
simulation of the dimer is a counter-rotation of the subunits. Deformation v
to the global motion, in conformity with the results from ANM. Image gene
(DHAP) and D-glyceraldehyde 3-phosphate. TIM is fully

active as a homodimer (B500 residues), even though no

cooperativity or allostery has been reported between the two

catalytic sites located in the middle of each TIM barrel

(Figure 8(a)).70 Loop 6 (residues 166–176) plays a key role

during catalysis by closing over the ligand by a 7-Å displace-

ment of the loop’s tip between the open and closed states in

the crystal structures.

ANM has revealed, for the first time, large-scale domain

motions of the enzyme that are coupled with loop dynam-

ics.45 A mixed resolution model has been adopted in these

calculations, in which the HR region comprises the active site

residues and the functionally important loop 6 on one

monomer with the remaining residues described at low reso-

lution to maintain the overall shape of the enzyme. In both

uniform and mixed resolution models, a correlation was

observed between the global motions (first and fourth modes)

of the overall enzyme and the local loop 6 opening/closure

dynamics.45 The alternative conformations that occur during

the fluctuations along the first mode (Figures 8(b) and (d))
Loop6

s of apo (PDB code: 8TIM) and ligand-bound (1TPH) TIM show the
nd (black spheres) is phosphoglycolohydroxamate, an analog of a
en), and Glu165 (magenta). (b) and (d) Alternative conformations in
ng/closure is an intrinsic feature of the apo enzyme coupled to
. The ratio of the high-resolution (atomistic) to low-resolution (n¼ 1)
onformations. (c) The first essential mode from a 60-ns MD

ectors (loop 6 shown in red) indicate that the loop closure is coupled
rated with PyMOL.
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indicate proper loop closure (in accord with known ligand-

bound structure) for both atomistic and residue-based regions

of the mixed resolution model.46 In contrast, ANM calcula-

tions performed for the high-resolution region have only

resulted in a low overlap value (0.25 using k¼ 4 in eqn [12])

with an all-atom ANM of TIM based on the first four

modes, which emphasizes the necessity of intact three-

dimensional structure for correct collective dynamics.45 Thus,

loop opening/closure emerges as an intrinsic dynamics feature

of the dimeric enzyme, which is consistent with the experi-

mental finding that loop closure is not ligand gated in the

apo state.71

When the available crystal structures for TIM are aligned,

different conformations of loop 6 are predominantly observed

(as in Figure 8(a)) without a clear indication of the collective

motions described by ANM. As a result, MD simulations72–74

have mainly concentrated on the loop region without taking

the flexibility of the whole protein into account. However, MD

simulations (60 ns) on fully flexible, dimeric TIM48 have

presented a complementary and consistent view to the ENM.

The essential dynamics of MD trajectories was extracted by

principal component analysis of the covariance matrix of

internal displacements.75 The first mode (representing

34% of the overall motion) was found to be a counter-rota-

tion of the two subunits, coupled to the closing/opening

motion of loop 6 (Figure 8(c)). In contrast, MD simulations

performed on a single monomer of TIM have not shown sig-

nificant collective motions and proper loop closure. This may

partially explain why the catalytic activity is highly suppressed

in a monomeric TIM designed with almost the same TIM-

barrel fold.76

Elastic network modeling has provided other insights in

the context of the relationship between intrinsic conforma-

tional flexibility and catalytic activity.7 With respect to the first

step of the catalytic reaction, significant changes in the

interatomic distances are observed in the slowest ANM mode

that could promote proton transfer from DHAP to Glu165.77

In addition to the catalytic reaction, deamidation of Asn71

and Asn15 takes place at the dimer interface of TIM, which

leads to subunit dissociation, unfolding, and subsequent

degradation of the enzyme in mammals. A GNM study iden-

tified a network of coupled motions between the deamidation

and catalytic sites of TIM, which may affect the deamidation

barrier height.78
9.3.3.2 Toward Understanding the Molecular Basis and
Mechanism of Supramolecular Machinery

9.3.3.2.1 Allosteric cycle of the bacterial chaperonin
GroEL-GroES

Many allosteric systems are multimeric and packed in spatially

symmetric ways. A classic example is hemoglobin (Hb), a tet-

ramer usually referred to as a dimer of a dimer, given the

structural and dynamic correspondence between the pairs of ã
subunits a1 and a2 and b subunits b1 and b2. The transition of

Hb between its relaxed (R) and tense (T) forms occurs via the

coupled movements of the two dimers, which give rise to a

conformational switch at the a1b2 and a2b1 interface. ENM-

NMA calculations demonstrated that this conformational

change is achieved by moving along the second softest mode.54
Concerted motion of multiple subunits is a feature

observed in many allosteric systems. In many cases, the

structures are multimeric, composed of identical subunits

arranged in a symmetrical geometry. The soft modes that

simultaneously induce the same global change in all subunits

maintain the symmetry of the structure. These modes are

nondegenerate (i.e., no other symmetrically related mode

complements them) and instrumental in achieving the tran-

sition between two symmetrically arranged end structures. A

typical example is the bacterial chaperonin GroEL (Figure 9).

GroEL is a large (on the order of megadaltons) molecular

machine that assists the folding of a number of E. coli proteins

via an ATP-regulated allosteric mechanism. It consists of two

rings, cis and trans, each comprising seven subunits with a

sevenfold symmetry around the cylindrical cavity that encap-

sulates the substrate (misfolded or partially folded protein or

peptide). Structures along the allosteric cycle of GroEL high-

light the cooperative changes accompanying its transitions

between unliganded (T form of all subunits in both rings or T/

T form of the GroEL), ATP-bound (to all seven subunits on

one of the rings, called the cis ring; R/T), co-chaperonin

(GroES)- and ATP-bound (R0/T), ADP-bound (to all cis ring

subunits; R00/T), and both ATP- and ADP-bound (to the

respective trans and cis rings; R00/R) states of GroEL. Figure 9

illustrates the conformations R00/R and T/R viewed from the

side (Figure 9(a)) and from the top (Figure 9(b)). Figures

9(c) and (d) show the coupled conformational changes of

pairs of subunits between the R00 and T states. The subunits in

Figure 9(c) are colored by their extent of mobility (as in

Figures 9(a) and (b), with blue being the most rigid and red

the most mobile regions); those in Figure 9(d) display the

three domains (apical, yellow; intermediate, red; and equa-

torial, blue) on each subunit. A pair of subunits is shown in

each case to illustrate how the adjacent subunits in a given

ring undergo concerted changes in structure – that is, the

change in one subunit could not be undertaken if the adjacent

subunits were not undergoing the same type of conforma-

tional change.

The experimentally observed change between the R00 and T

forms of the entire ring conforms closely to the global (softest)

mode predicted by ANM for a single subunit. The bars in

Figure 9(e) display the correlation cosine between the ANM

modes u(k) (for ko25) accessible to the R00 state and the

experimentally observed difference d(0) between the R00 and T

forms of GroEL. Strikingly, the first lowest frequency mode

accessible to the single subunit yields a correlation cosine of

approximately 0.8 with the change undergone in the GroEL

complex during its allosteric cycle. The cumulative correlation

squared, Skcos2(d(0), u(k)), over all 3N� 6 modes is by defi-

nition 1. The observed correlation of 0.8 is therefore higher by

a factor of approximately 105 compared to that expected from

a random vector in 3N-dimensional space. Figure 9(f) illus-

trates how the RMSD between the two endpoints of the

transition R00-T decreases from its original value of approxi-

mately 12.4 Å to approximately 7 Å by moving along only

mode 1. The other two curves display the further decrease

achieved by additional movements along two more modes.

The right plot in Figure 9(f) refers to the reverse transition,

T-R00. Mode 1 has practically no effect in this case, whereas

modes 3 and 4 are functional. The passage from R00 to T is a
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‘natural’ change that occurs spontaneously upon releasing all

seven ADPs (of the R00 form). The high correlation between the

ANM-predicted softest mode and the structural change natu-

rally observed is noteworthy. The opposite change, on the

other hand, is driven by ATP binding, consistent with the

computed lower intrinsic propensity of the subunit to undergo

this change spontaneously.

9.3.3.2.2 Ribosomal machinery
The ribosome is a molecular machine that synthesizes proteins

based on the genetic information encoded by mRNA. The

bacterial 70S ribosomal complex is a supramolecular assembly

of the small (30S) subunit composed of 16S rRNA and 22

proteins and the large (50S) subunit with 23S and 5S rRNAs

and 34 proteins (Figure 10(a)). During the process of trans-

lation – composed of initiation, elongation, termination, and

recycling steps – the ribosome interacts critically with other

key factors, such as mRNA, tRNAs, initiation factors, and

elongation factors (EF-G and Ef-Tu). Cryo-electron micro-

scopy and X-ray crystallography have provided valuable

information on ribosome conformational dynamics and its

interactions with ligands, recently at high resolution.79 Single-
molecule fluorescence resonance energy transfer studies

have played a key role in the proposal of a mechanism for

tRNA translocation through the ribosome in the elongation

step. This multistep process of translocation, which presents

the features of a complex energy landscape, is intricately

coupled to the ratcheting and unratcheting motions of the

ribosome.80

The ratchet-like rotation of the 30S subunit relative to 50S,

first observed by cryo-electron microscopy,81 has emerged as

an intrinsic motion of the 70S complex in all CG ENM studies

performed to date46,49,82–84 (Figures 10(b) and (c)) and also

in a CG MD simulation.84 The deformations of tRNAs appear

to be coupled to the ratchet-like rotation (Figure 10(d)).

Moreover, another ANM mode85 reveals a 30S head rotation

around the neck, consistent with experimental results.79 Both

of these collective modes may be involved at certain stages of

the translocation mechanism of tRNAs residing in the A and P

sites. High anticorrelated fluctuations of the L1 and L7/12

stalks in slow modes bear functional significance. Specifically,

the closure/opening of the intersubunit interface due to L1

stalk mobility may be linked to the exit of the E-tRNA, and the

mobility of the L7/L12 stalk may be required for the
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recruitment of elongation factors (Figures 10(b)–(d)), in line

with experimental findings.86,87 Intrinsic flexibility of the neck

region in 30S seems to be a requirement for the binding of

mRNA and tRNAs.49 Common features, mainly ratchet-like

rotation and stalk motions, survive in a hypothetical model

excluding ribosomal proteins, which implies that ribosome’s

built-in catalytic activity (carried out by the rRNA) is evolu-

tionarily conserved.85

Structural studies have shown that proteins are synthesized at

the peptidyl transferase center and emerge through a tunnel

(with B15 Å diameter and B100 Å length), both located in the

large subunit 50S. The collective deformations of the polypep-

tide tunnel have been extracted based on the ANM calculations

for the intact 70S ribosome.88 Orientational cross-correlations of

residues clearly divide the tunnel into an entrance region and the

rest comprising the neck and the exit regions, in line with the

experimentally determined polypeptide folding regions.89 The

motions of ribosomal proteins L4 and L22 located at the nar-

rowest part of the tunnel may be related to the polypeptide

gating mechanism.90 The third mode in Figure 10(e) (i.e.,

ratchet-like rotation) represents an overall downward movement

that may direct a nascent polypeptide toward the exit. Again, the

intrinsic dynamics of the ribosome (several of the first five
modes and their linear combinations) bear functional implica-

tions in terms of guiding the nascent polypeptide through the

tunnel and the gating mechanism.

9.3.4 Beyond Structural Dynamics: Extensions and
Future Directions

9.3.4.1 Bridging between Sequence Correlations and
Structural Dynamics

9.3.4.1.1 Mutual information theory
In recent years, there have been many advancements in the

development and implementation of high-throughput

sequencing techniques. Sequence analyses usually aim at

identifying evolutionarily conserved residues, based on the

hypothesis that functional sites ought to be conserved. How-

ever, a second group of residues, not conserved but evolving in

a correlated way, has provided almost equally valuable infor-

mation on functional mechanisms.

The coevolution of residue pairs, also referred to as corre-

lated mutations,91 is now being broadly explored to obtain

information on a range of issues, including the possible

prediction of native contacts in proteins92–94 and the identi-

fication of probable docking sites at protein-protein
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interfaces.95,96 Concepts from statistics and information the-

ory are utilized, such as Pearson correlation statistics97 and

mutual information (MI) theory.98 Other approaches have

been borrowed from established statistical thermodynamics

concepts, such as statistical coupling analysis introduced by

Lockless and Ranganathan.99 A comparison of various meth-

ods can be found in the literature.100,101

MI is one of the earliest techniques employed for detecting

coevolving residues.102,103 It quantifies the degree to which

two random variables co-vary. The MI conveyed by two dis-

crete random variables X and Y is defined as

IðX;YÞ ¼
X
all x

X
all y

PðX ¼ x; Y ¼ yÞlog
PðX ¼ x; Y ¼ yÞ

PðX ¼ xÞPðY ¼ yÞ ½16�

where P(X¼ x, Y¼ y) is the joint probability of occurrence of

the values/properties x and y for the respective variables X and

Y, and P(X¼ x) and P(Y¼ y) are the corresponding singlet

probability distributions. In the application of the MI theory

to correlated mutations analysis, the properties x and y are the

types of amino acids, and the random variables X and Y des-

ignate particular positions/sites along the sequence. If X and Y

are independent (i.e., the types of amino acids observed

at sequence positions X and Y are not correlated), then the

joint probability P(X¼ x, Y¼ y) reduces to the product

[P(X¼ x)P(Y¼ y)], which defines the lower bound, 0, for I(X,

Y). In the other extreme case of a random variable X com-

pletely determined by Y (or vice versa), the joint probability

reduces to the singlet probability, and eqn [16] simply

becomes the entropy of X (or Y), which is the largest MI value

obtainable for the examined system. The latter case corre-

sponds to a perfect coevolution of the two residues.
9.3.4.1.2 HIV-1 Protease sequence and structure
correlations

HIV-1 protease has been under extensive study for decades as

an important target for AIDS therapy.104 This enzyme is a

homodimer of 99 residues per monomer, with the active site

located at the core of the dimerization interface. Numerous

HIV-1 protease inhibitors have been developed and used in

U.S. Food and Drug Administration-approved drugs, although

these efforts have been impeded by the rapid mutations of the

enzyme that exhibit multidrug resistance (MDR).105,106

Compared to mutations arising from phylogenetic variations,

drug-induced mutations usually occur at much higher rates

and over a broader range of residues, depending on the

selective pressure imposed by drug treatment.

Our group conducted a two-prong study.103 First, we

retrieved the covariance patterns of amino acids in different

sequences (HIV-1 protease mutants) from the Stanford HIV

Drug Resistance Database.107 Second, we performed a GNM

analysis of the global dynamics of the protease to determine

the potentially functional mechanisms of collective motions.

This study demonstrated (1) the possibility of distinguishing

between the correlated substitutions resulting from neutral

mutations and those induced by MDR upon appropriate

clustering analysis of sequence covariance data and (2) a

connection between global dynamics and functional sub-

stitution of amino acids.
The Stanford HIV Drug Resistance Database provides a

wealth of information on HIV-1 reverse transcriptase and HIV-

1 protease mutants, annotated with the treatment history of

patients from whom the virus samples have been drawn. We

retrieved the sequence data on HIV-1 mutants, which have

been organized into two groups, namely those from patients

treated by different regimens (by at least one drug) and those

from untreated patients. Sequences in each group were opti-

mally aligned, containing approximately 8000 sequences with

99 columns (residues), and then subjected to MI analysis. A

99� 99 symmetric matrix, referred to as the MI map, was

obtained, which in turn was analyzed using a spectral graph

partitioning method (minimization of normalized cut).108

The method permitted us to identify two clusters of residue

pairs with maximal correlations within each cluster and

minimal correlations across the clusters (Figure 11(a)). Closer

examination of the residues in each cluster revealed that one

of the clusters was essentially composed of residues involved

in MDR acquisition (MDR cluster), as evidenced by compar-

ison with experimentally known sites;103 the other included

those residues differentiated in the various HIV-1 protease

subtypes,109 and it was called the phylogenetic variation

(PGV) cluster. The residues identified by this type of correlated

mutation analysis to belong to these two clusters are shown in

blue and orange, respectively, along the sequence alignment of

representative members from subgroups in Figure 11(c) and

explicitly shown by the same colors in the ribbon diagram

displayed in Figure 11(d). The high correlation between the

MDR residues is consistent with their cooperative conferral of

multiple drug resistance.110 Clustering on the MI map gener-

ated for the untreated data, on the other hand, yielded one

single cluster – the PGV (Figure 11(b)).

Figure 11(c) displays the global mode profile obtained by

the GNM for HIV-1 protease. Calculations were performed for

the dimer, but results are shown for only a monomer because

the two monomers exhibit the same profile. The question we

raised, then, was whether the residues belonging to the two

clusters exhibited any distinctive features with regard to the

structure and dynamics of the enzyme. As shown in

Figure 11(c), the MDR cluster residues essentially occupy sites

close to the central symmetry axis of the enzyme. Importantly,

their positions overlap with the global hinge region identified

by the GNM analysis of the enzyme (minima in Figure 11(c)),

and they may thus be involved in the coordination of the

global motions. The PGV residues, on the other hand, occupy

solvent-exposed and highly mobile regions, which may pre-

sumably sustain substitutions without significant con-

sequences on the stability of the structure or the mechanism of

global motions.

This study thus revealed the close link between global

dynamics and sequence correlation patterns. In summary,

drug-resistance mutations occurred at regions close to the

global hinge, which neighbors the catalytic center and coop-

eratively affects the global dynamics of the protease. The cor-

related mutations corresponding to phylogenetic variations,

on the other hand, have preferentially occurred on relatively

more mobile (or less constrained) regions of the structure

such that the key catalytic and mechanical sites have not

been affected, consistent with basic evolutionary selection

principles.
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9.3.4.1.3 Hsp70 ATPase domain
The change in the conformation of Hsp70 ATPase domain

structure upon NEF binding was discussed previously. A

molecular understanding of the mechanism of NEF assisting

the nucleotide exchange process requires a more detailed

investigation of the two groups of functional residues: those

residues at the NEF binding interface and those at the

nucleotide binding pocket. We have conducted a combined

analysis of the sequential, structural, and dynamical properties

of these residues.68 Figure 12(a) shows the structural locations

of NEF binding residues (based on three mammalian NBD-

NEF complexes: BAG, HspBP1, and Sse1) and the nucleotide

binding residues. The NEF binding residues are mostly

exposed and abundant in polar amino acids, whereas the

nucleotide binding residues are buried in the core region and

contain a large number of glycines (Gly12, Gly201, Gly202,

Gly203, Gly230, Gly338, and Gly339). GNM calculations

reveal the fundamentally distinct character of the two groups

of residues with regard to the dynamic properties of the NBD.

Figure 12(b) highlights the enhanced mobility of NEF-con-

tacting residues (peaks in the global mode profile). The

nucleotide binding residues, on the other hand, usually

occupy minima in the mode profile, indicative of their con-

strained mobility in the soft modes. Subdomain IIB contains a

major portion of NEF binding residues, and these residues –

and subdomain IIB in general – are the most mobile region of

the molecule. Their high mobility allows them to efficiently

recognize the co-chaperone NEF; on the other hand, the

abundance of glycines at the nucleotide binding site is in

accord with the global hinge-bending role of this site, where

residues are rotationally flexible but spatially immobile.

Comparison of the intrinsic dynamics (weighted average of

the 10 slowest modes; Figure 12(b)) between the unbound

and bound forms suggests that the mobility of NEF binding

residues is suppressed upon NEF binding, although the overall

shape of the global mode is closely maintained. The depres-

sion in the mobility of NEF binding sites essentially indicates

the stabilization of the NEF-bound (open) conformation. In

particular, certain residues in subdomain IIB (Arg247, Lys248,

Lys250, Asp285, Ser286, Gly290, and Asp292) and in sub-

domain IA (Asp32 and Gln33) exhibit the largest reduction in

mobility. Despite these differences, the similarity of the two

curves is also apparent in that the loci of peaks and minima

are maintained. Note that both curves are normalized and

represent a probability distribution of mobilities in this

representative subset of soft modes.

Figure 12(c) shows an interesting relation between the

level of conservation of a given residue and its intrinsic

dynamics. The level of conservation was quantified using the

evolutionary trace (ET) method.111 More conserved residues

have higher ET rank (i.e., rank 1 is the most conserved).

Overall, the results disclose an inverse correlation between the

extent of mobility and the level of conservation. Nucleotide

binding residues are usually highly conserved, whereas NEF

binding residues tend to be more variable (except for a few

outliers such as Asp292 and Leu274).

Closer examination of mutational trends at the NEF

binding sites, however, reveals that the mutations are not

random; instead, they are correlated with each other. The MI

map shown in Figure 12(d) indicates that NEF-contacting
residues account for a large proportion of top-ranking corre-

lated pairs. The bars below the MI map represent averages over

each column, revealing that most correlated residues essen-

tially coincide with NEF binding residues. Figures 12(e) and

(f) provide a closer view of two portions of the MI map, which

involve residues 246–305 and 16–75. These two regions

contain 90% of all NEF-contacting residues, and most of them

are highly correlated with each other. In Figure 12(e), note the

remarkably high coevolutionary patterns of the pairs Thr265-

Thr273, Arg258-Tyr288, and Thr273-Tyr288. In Figure 12(f),

the pairs Glu27-Arg258, Glu27-Tyr288, Gln33-Thr273, and

Gln33-Glu283 exhibit remarkably high correlations, despite

their long-distance separation on the structure. These results

suggest that the correlated mutations at those sites are asso-

ciated with allosteric effects and may affect binding of NEF

residues at distant sites. These residues presumably coevolve to

perform specific NEF-dependent recognition and binding

activities, which differ between Hsp70 subfamilies. Interest-

ingly, Bukau and co-workers112 found that a signature loop

(Ala276-Arg302) in DnaK subdomain IIB along with three

interacting residue pairs (Met259-Val59, Glu264-Arg56, and

Glu267-Lys55) at the nucleotide binding cleft mark the

divergence of Hsp70 subfamilies such that variations of these

residues may account for the selectivity of NEF binding (in this

case, GrpE and BAG). The phylogeny-based variations of these

residues are therefore contributing to the strong coevolution

detected within these regions.
9.3.4.2 Exploring Transitions between Functional States

9.3.4.2.1 Using adaptive ANM
To explore the suitability of aANM for predicting the transi-

tions T-R-R00-T of GroEL rings, we first examined the

transition R00-T before proceeding to the intact chaperonin.

Results for the transition R00-T are shown in Figure 13.

Figure 13(a) displays the change in energy involved in dif-

ferent Fmin. It can be seen that lower Fmin values allow for

larger excursions away from the targeted direction by recruit-

ing relatively smaller numbers of low-frequency modes

(Figure 13(c)). They consequently require a larger number of

steps to be undertaken to reach the target, whereas the

accompanying energy increase is relatively small. Higher Fmin

values, on the other hand, permit the target to be reached

faster but with a higher energy cost. The limit Fmin¼ 1 corre-

sponds to pure interpolation by recruiting all modes. The

reaction coordinate in Figure 13(a) is the projection of the

cumulative displacement m(n)¼R(n)�RA
(0) on the original

distance vector d(0) – that is, x(n)¼ d(0) � m(n)/9d(0)92, with R00

and T representing the respective limits x(n)¼ 0 and 1. The

peak in the energy profile tends to be closer to the T state,

especially when lower Fmin values (which entail lower energy

barriers) are adopted. This may be related to the recruitment

of higher modes (steeper ascent along the energy surface) near

state T, as opposed to the first mode near R00.

A series of conformations visited along the transition

pathway are displayed in Figure 13(b) for Fmin¼ 0.5. If

the equatorial domain is fixed as a reference, the apical

domain closes down and twists about the axial direction,

and the intermediate domain moves away. An interesting
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Figure 12 Bridging between sequence correlations and structural dynamics of Hsp70 ATPase domain (NBD), in relation to its NEF binding properties. (a) NEF-contacting residues are shown in stick
representation and colored by subdomains (see Figure 2(a)). Nucleotide binding residues (G12-Y15, G201-G203, G230, E231, E268, K271, R272, S275, G338-S340, R342, I343, and D366) are shown as
gray spheres. (b) Weighted-average mobility profiles based on the top-ranking (softest) 10 GNM modes, calculated for the unbound NBD (black) and for the NEF-bound (purple) structures, averaged over
three mammalian complexes (BAG, HspBP1, and Sse1). Labels are colored in accord with the scheme in panel (a). The horizontal bars along the upper abscissa indicate the ranges of the four
subdomains IA, IB, IIA, and IIB. Bound and unbound NBD exhibit similar profiles, consistent with the intrinsic dynamics of the NBD irrespective of co-chaperone (NEF) binding. NEF-binding residues tend
to occupy peak positions, whereas nucleotide-binding residues are at the minima (global hinge site). (c) Evolutionary trace (ET) rank vs. mobilities (from panel (b) for all residues in the Hsp70 ATPase
domain. (d) MI map for the Hsp70 ATPase domain sequence. The color-coded bar on the right indicates the level of correlation between the evolution of residue pairs. The bar plot below the map
displays the contribution of each residue to the most correlated residue pairs (top 5%, 722 pairs) in the MI matrix. NEF binding sites exhibit the highest correlations. (e and f) Close-up views of two
regions of MI maps, which contain a large number of NEF-binding residues: residues 246–305 (subdomain IIB) and 16–75 (containing NEF-contacting segments in subdomains IA and IB) (e) and
residues 246–305 (f). The bar plot displays the average MI (over all entries in a given column) for residues in these segments; those corresponding to NEF binding residues are colored by their
subdomain. For more details, see Liu et al.68 Ribbon diagram generated with PyMOL.
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observation is the sequential order of events. First, the equa-

torial and intermediate domains almost stick to each other

and move coherently as a single rigid body, whereas the apical

domain undergoes an upward tilting and simultaneous

twisting. The movement of the apical domain is completed in

the first half of the transition pathway from R00 to T. Then,

slight rearrangements in the relative positions of the equa-

torial and intermediate domains occur, which expose the

top portion of the apical domain to bind the substrate and the

co-chaperonin GroES. This sequence of events is consistent

with the two-stage transition explored by targeted MD

simulations.113

The number of modes involved in the transition between

substates is an issue that has been raised in a number of stu-

dies.114,115 Figure 13(c) displays the number of modes

recruited in each iteration during the reconfiguration of a

given subunit from substate R00 to substate T. An important

observation is the increased involvement of higher frequency

modes as we proceed away from the original state. In other

words, the slow modes play an important role during the

initial stages of deformation, and they continue to play a role

throughout the entire trajectory, although they are gradually

complemented by increasingly larger subsets of higher-fre-

quency modes. The dominance of low-frequency modes is

consistent with the previously noted driving role of global

motions in GroEL allostery.116
Apo (4ake)

Intermed
by ANM

15th 25

RMSDs t

4.71 Å 3.49

Figure 14 Conformational change between the apo and ligand-bound form
structures of apo adenylate kinase (PDB code150) and its complex (1AKE151

domains: a core domain (gray), an ATP binding or LID domain (red), and a
transition pathway of AK (bottom) are from the 15th (with 2.96 Å RMSD to
and 45th (2.38 Å RMSD to 1E4Y A chain154) iterations of ANM_MC simulat
conformations decreases to 2.34 Å at the 45th iteration. The closure of the
PyMOL.
The previously performed calculations for a single subunit

demonstrated that the transition pathways between the func-

tional forms of the single subunit can be delineated by the

aANM algorithm. We then explored the allosteric transitions

of the intact chaperonin. Figure 13(d) displays three snap-

shots along the evolution of the intact structure from T to R

viewed from the top and the side. The trans ring is generally

observed to undergo moderate changes between the T and R

states. The cis ring, on the other hand, undergoes concerted

rotations and extensions at the apical and intermediate

domains. Notably, the intermediate domains move toward

the cleft between neighboring equatorial domains, whereas

the apical domains extend along the vertical (cylindrical axis)

direction accompanied by a rotation about the same axis.

These motions result in the enlargement of the central

cavity along with the exposure of the flexible loop K15-T36 on

the apical domains of the cis ring to bind the GroES.

Notably, the aANM trajectories of the intact GroEL struc-

tures retain the sevenfold rotational symmetry. In each ring,

the movements of all subunits are identical and coherent. We

noted that not all slow modes in the lower end of the spec-

trum contribute to the transition. Instead, a subset of modes

that induce cylindrically symmetric changes effectively con-

tribute. For example, in the first iteration, although 51 modes

are involved, the contributions of modes 2–9 are almost zero,

and there are large contributions from the nondegenerate
Complex (1ake)

iates 
_MC

th 45th

o target

 Å 2.34 Å 

s of adenylate kinase observed by ANM_MC simulations. Crystal
) with AP5A (orange) are shown at the top. AK comprises three
n AMP binding domain (blue). Three intermediates detected34 on the
2AK2 crystal structure152), 25th (2.36 Å RMSD to 1DVR A chain153),

ion. The initial RMSD of 7.13 Å between open and closed
LID precedes that of the AMP binding domain. Image generated with
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modes 1, 10, 11, 28, and 51. Our results support the MWC

view24,117 of preexisting cooperative modes being selectively

used for controlling allostery. Likewise, GroEL engineering

experiments provide evidence for the concerted nature of the

allosteric transition.118
Figure 15 Cyclophilin A conformers generated by atomistic ANM and
subsequent energy minimization. Models are shown together with their
docked ligand cyclosporine A. The starting protein conformation is
extracted from the crystal structure (1BCK) for the CypA-cyclosporine
A complex.155 AutoDock v.4156 software is used for docking (rigid
protein, flexible ligand with 17 rotatable bonds) with the Lamarckian
genetic algorithm. Image generated with VMD.157
9.3.4.2.2 Using Monte Carlo simulations integrated with
collective modes

Inasmuch as the information for the conformational changes

that occur upon ligand binding is implicit in the folded

structure of the unbound state, ENMs present a computa-

tionally efficient means to extract this information.18,22,23

However, new hybrid techniques have to be devised in order

to extract realistic data along conformational transitions

described by the purely harmonic collective modes of

ANM.119,120 Energy minimization – by molecular mechanics

or MD or Monte Carlo (MC) simulations – presents a plau-

sible route.

A hybrid methodology combining MC simulations with

the collective modes from ANM has been proposed for ana-

lyzing conformational transitions of proteins.121 The original

CG MC technique122–124 is based on the virtual bond

model,125 with every residue being represented by two sites –

one on the a carbon and the other at the side chain centroid.

Knowledge-based potentials extracted from crystal structures

of folded proteins are used for calculating the energy of a

conformation including both short- and long-range poten-

tials.126,127 The original MC algorithm based on local moves

of randomly chosen sites has been modified into an iterative

procedure (ANM-MC), in which a perturbation along an ANM

harmonic mode is followed by a certain number (100–1000)

of MC local moves to relax the deformed structure. In each

cycle, ANM modes are updated, and the protein is deformed

(preferably with an RMSD of B0.2 Å) along the collective

mode presenting the highest correspondence to the open-to-

closed transition direction.

Using the ANM-MC algorithm, the initial RMSDs of 7.13

and 3.55 Å between the apo and bound states of adenylate

kinase (AK) and Hb have been decreased to 2.3 and 1.9 Å,

respectively. For AK, certain intermediates on the transitional

pathway (shown in Figure 14) have been identified by com-

parison with the other available crystal structures of AK, in line

with previous studies based on ENMs.119 During the transi-

tion, the closure of the ATP binding domain (also called the

LID) over the core domain precedes the AMP binding domain

closure, as originally noted by Temiz et al.128 Hemoglobin

presents three major conformational states: a tense, apo state

(T), an O2-bound relaxed state (R), and a CO-bound relaxed

state (R2). ANM-MC has indicated that the R state is an

intermediate along the transition from T to R2, similar to a

previous computational study.129 The allosteric T-to-R2 tran-

sition has also been achieved down to an RMSD of 2.4 Å by

using only the slowest mode from ENM.54 For both proteins,

the first two modes were effective in driving the collective

conformational changes during the first half of the simula-

tions, after which none of the collective modes exhibited high

overlaps with the transition direction.

A major achievement in this line of work would be to

devise techniques that could predict plausible bound
conformations using only the apo structures. Preliminary

results with ANM-MC indicate that successful end-structure

predictions could be made by constraining the radius of

gyration of some hinge-bending proteins. An ENM-based

approach making use of several distance constraints for the

end state has proven successful in maintaining the associated

transitions for a set of 16 proteins.130,131
9.3.4.3 Generation of Conformers for Ensemble Docking

Inasmuch as protein conformational dynamics emerges as a

key player in ligand binding, the inclusion of receptor flex-

ibility has been emphasized in structure-based drug design for

obtaining higher success rates compared to those of studies

with rigid target structure. Several alternative methodologies

exist for incorporating protein flexibility (side chain and/or

main chain) in docking but at the expense of increased

CPU requirements.132,133 The ensemble docking algorithm

presents a computationally feasible solution to this problem,

in which a set of conformers from experiments (X-ray

and NMR) or computations (MD and MC simulations, nor-

mal modes) describe the intrinsic flexibility of the receptor for

docking.134

Because MD simulations become computationally expen-

sive for the conformational sampling of large systems, ENMs

may provide a possible alternative. Realistic conformers for
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cyclophilin A (CyPA, 165 residues) have been generated by

deforming the native structure along low-frequency ANM

modes and performing subsequent energy minimization using

implicit salvation.135 In a previous study on CyPA, a graph-

theoretical approach was used to generate conformers by

considering the flexibility of each loop region independently,

in contrast to ANM modes that describe collective deforma-

tions for the global structure including the loops.136 The

conformers based on either atomistic or residue-based (uni-

form coarse-graining) ANM present reasonable energies

(comparable or lower than that of the starting X-ray structure)

and internal geometries (i.e., torsional angle preferences and

atom-atom contacts). All CyPA conformers have been subject

to an ensemble docking experiment to the cyclic ligand

cyclosporine A, as a result of which some conformers pre-

sented stronger binding modes, again compared to the crystal

structure of the complex (Figure 15). For the specific case of

CyPA, conformers generated from atomic and CG ANM

modes are equally successful in producing docked poses of

the ligand. The conformers exhibit moderate conformational

changes with maximum RMSDs of approximately 2 Å for

the loops surrounding the binding pocket. Proteins presenting

larger conformational changes (overall or loops) may be

dealt with by performing ANM and energy minimizations in

cycles. Conformations along TIM’s loop closure have been

mimicked by performing this cyclic procedure along first

mode.46

Cavasotto and co-workers137 used the ENM for ligand

docking to cAMP-dependent protein kinase, in which rela-

tively high-frequency modes (mode numbers 4140) have

been considered for loop rearrangements at binding sites.

Target flexibility introduced along the second normal mode

for metalloproteinases has been effective for determining the

inhibitor binding modes.138 ENMs are also being imple-

mented in protein-protein docking algorithms for describing

global conformational changes of partners.139,140 Thus, an

increasing number of studies support the utility of using these

simplified models for efficiently sampling the conformational

space of the target protein and generating most readily

accessible conformations that would facilitate the search for

the optimal binding pose of the lead compounds.
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