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ABSTRACT: It is often valuable to compare protein structures to determine how similar they are. Structure comparison
methods such as RMSD and GDT-TS are based solely on fixed geometry and do not take into account the intrinsic flexibility or
energy landscape of the protein. We propose a method, which we call FlexE, that is based on a simple elastic network model and
uses the deformation energy as measure of the similarity between two structures. FlexE can distinguish biologically relevant
conformational changes from random changes, while existing geometry-based methods cannot. Additionally, FlexE incorporates
the concept of thermal energy, which provides a rational way to determine when two models are “the same”. FlexE provides a
unique measure of the similarity between protein structures that is complementary to existing methods.

1. HOW CAN WE MEASURE THE SIMILARITY
BETWEEN TWO PROTEIN STRUCTURES?

Often, there is a need to compare two protein structures.
Comparisons are commonly made on a geometric basis, such as
the root-mean-square deviation (RMSD) of the Cartesian
coordinates of the best superposition of the two structures. But
there are some problems with this. First, RMSD is not
independent of the protein size.1 Second, if the differences in
structure are localized to a particular region, a superposition
using a single alignment will lead to a spurious distribution of
differences more globally throughout the structures. RMSD is
not able to distinguish between a large change localized to a
small region of the protein and a smaller change distributed
globally across the entire structure. Given the importance of
this problem, a large effort has been undertaken to improve on
these metrics ranging from the use of Gaussian-weighted
RMSD2 to introducing a rough approximation to protein
flexibility.3−6 One such alternative is to use local-global
alignments (LGA).7 Here, many superpositions are performed,
and the score is given as the maximum fraction of Cα atoms
that are positioned correctly to within a certain cutoff. This
measure is size-independent and the choice of cutoff specifies
the resolution of the structural comparison. The global distance
test total score (GDT-TS) is a commonly used metric of
structural similarity that measures the average fraction of
residues that are correct with 1, 2, 4, and 8 Å cutoffs. GDT-TS
is based on four different superpositions at different resolutions
and is better able to distinguish between local and global
changes than RMSD. GDT-TS has become the de facto
standard for measuring structural similarity in the Critical
Assessment of Structure Prediction (CASP) series of experi-
ments,8 although several other scores, including RMSD, are also
used. For the purpose of this article, we will refer to geometric
scores in general to mean either RMSD or GDT-TS.
There is an additional limitation of geometric structure

comparisons. When comparing theoretical models, it is more

relevant to compare energies than structures, because energy is
the currency for understanding thermodynamically stable states
and Boltzmann populations. Moreover, energies are the basis
for protein motions and function.9−13 Because energy surfaces
are not isotropic, proteins can deform easily along some
directions (flexible directions or soft modes) and deform very
little in other directions. Thus, two different deformations of a
protein that have exactly the same RMSD can potentially have
very different energies (see Figure 1).
Here, we describe an energy-based method for comparing

two protein structures. On the one hand, the only way this
could be done without error would be if we knew the exact
potential function and fully simulated the free energy
differences between the two conformations, for example, by
molecular dynamics.14 But such simulations would be
prohibitively expensive. Furthermore, despite their atomistic
nature, the current physical models governing simulations,
despite their successes, are still too coarse to fully agree with all
experimental data. Normal mode analysis15 (NMA) based on
these atomistic potentials is faster, but still requires hours of
computational time.
In the absence of a perfect energy function, and with the aim

of a fast approximate computational methodology, here we use
Elastic Network Models (ENM).16−20 This allows us to capture
protein energies, motions, and flexibility with small computa-
tional cost (seconds on a desktop) while still giving a relatively
good correlation with more expensive MD and NMA
methods.21,22 ENM is often used to calculate normal modes
(NMs) describing the collective modes of motion of the
system. Our approach is different and novel: rather than
calculating NMs, our interest is in obtaining an ENM-based
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Hamiltonian around a reference structure, call it A. We then use
this Hamiltonian to calculate the deformation energies (FlexE
score) needed to sample a different conformation, B. In this
way, we compare the energies of structures A and B. This is
especially useful when the reference structure is a native
structure and we want to evaluate the quality of theoretical
models, such as in CASP comparisons. FlexE allows us also to
relate energy differences between A and B to the thermal
energy, (3/2)NkBT, of a system, where kB is Boltzmann’s
constant, T is the absolute temperature, and N is the number of
residues. This allows us to say when two structures are within
the thermal ensemble envelope around a native structure.
FlexE has some advantageous aspects: (1) independence

from superposition criteria, (2) protein topology and flexibility
are taken into account, (3) it can be used alone or with other
metrics to assess protein model quality, and (4) differences can
be expressed on a per-residue basis, so it is independent of
protein size. In this work, we will show the application of FlexE
on two data sets: (1) structures involving large conformational
transitions where the end states have been experimentally
determined23 and (2) the predictions from the refinement
portion of the most recent CASP event (CASP9).24 We show
that FlexE gives energies comparable to thermal energies for all
pairs of structures in the first group. Furthermore, we find that
FlexE can distinguish these biologically relevant motions from
motions that have similar magnitude but are generated
randomly. RMSD and GDT-TS cannot make such distinctions.

2. METHODS
2.1. ENM. In elastic network models, proteins are modeled

as beads (one per residue). Taking one structure as a reference,
the distribution of these beads in space systematically defines a
set of pairwise springs (between beads located within an
interaction cutoff distance), all of which are at their equilibrium
lengths. Any conformation different than the reference will
stretch those springs, and the energetic cost of deforming the
spring can be obtained according to eq 1. The collection of all
springs defines the Hamiltonian of the system, and the total

cost of deforming the structure is the addition of the energies
for all springs.

γ= −V d d(1/2) ( )ij ij ij
0 2

(1)

where γ is the spring force constant and dij represents the
distance between two beads, where the superscript 0 is used to
indicate the distance in the reference structure. The novel use
of ENM resides in directly using this Hamiltonian to evaluate
structures instead of deriving a Hessian to obtain the normal
modes.
There are several different elastic network models in the

literature which differ in the choice of which springs to use and
how to assign force constants. In the initial Rouse polymer
model, springs were attached to beads (for proteins usually the
Cα) that were contiguous in sequence space.25 In the
application to proteins, distance cutoffs were additionally
introduced to take into account nonbonded interactions in
proteins (thus taking into account the topology of the protein).
Although these models capture the correct directions and
relative magnitudes of motion, the absolute amount of motion
along each deformation mode must be matched a posteriori to
experimental results (typically by matching X-ray crystallo-
graphic B factors). This is due to the choice of spring constants
when building the Hamiltonians. Several implementations
introduce parameter-free ENMs, where the spring constants
are typically replaced by distance-dependent generic functions
that reproduce some underlying physical argument (such as
reproducing experimental B factors or MD trajectory
data).26−29 Recently, Orozco and co-workers19 introduced
another parameter-free ENM to better correlate with MD data
(ED-ENM) and make it independent of scaling factors. In
order to do this, two kinds of springs are used. Residues close in
sequence (from residue i up to i + 3) follow one derivation.
Residues that are close in space and not included in the first
group have a different derivation (for details see ref 19). We
have used his functional form with a 12 Å cutoff in the current
work since it gives us an absolute energetic scale and allows us
to compare to the thermal energy of the system. In cases where
only relative energies, rather than absolute energies, are
important (e.g., comparing structures within an ensemble),
any other ENM methods would be equally suitable.16,18,30,31

The steps involved in creating the ENM can be schematically
viewed in Figure 2. Implementation was carried out by using
the existing Prody package32 from the Bahar lab and adding a
small Python add-in to include the new ED-ENM method
(available at http://github.com/laufercenter/FlexE).

2.2. Molecular Dynamics Simulations. Simulations were
performed for the data set of structures from CASP9 that (1)
did not have broken chains due to missing residues and (2)
were monomers. Short 12 ns MD trajectories were performed
using the AMBER33 program package with the parm99SB force
field in explicit TIP3P34 water. Proteins were neutralized using
Cl− or Na+ ions as needed.35,36 The particle mesh Ewald
method37,38 was used for electrostatic interactions, and a 2 fs
time step with SHAKE39 on hydrogen bonds was used. The
temperature was maintained by using Langevin dynamics, and a
weak coupling algorithm was used to maintain pressure. We
took 200 structures from the last 1 ns of simulation (5 ps
spacing) to constitute the thermal ensemble and represent
conformations that are easily accessible on the energy landscape
of the protein.

Figure 1. Schematic representation of conformational space showing
the RMSD and energy for three structures. Structures A and B have
the same RMSD, but structure A has a lower energy. Structures A and
C have the same energy, but structure A has a higher RMSD.
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2.3. FlexE. The energetic cost of deforming one structure
into another is defined as

∑= −
N

k d dFlexE
1

0.5 ( )
i

n

ij ij ij
0 2

(2)

where n is the number of inter-residue distances below a given
cutoff, kij is the spring force constant used, and N is the number
of residues. Dividing by the number of residues makes the scale
protein-independent. In order to get good agreement with MD
energies, all kij’s are scaled by a factor of 0.40 with respect to the
original Orozco and co-workers implementation.19 The thermal
energy is kBT/2 for each vibrational mode, and each protein has
3N − 6 such modes. Accordingly, the FlexE energy is compared
to ThermE = (3N − 6)kBT/2. Additionally, the FlexE score can
be plotted on a per residue basis, which can help identify
problematic areas of the model.
The FlexE score can be interpreted at different levels of

resolution. For scores that are on the order of ThermE to
ThermE + kBT, the absolute values of the score are meaningful
due to the parametrization using a physically fitted model (MD-
ENM19). As the deformations grows larger, the elastic network
hypothesis can break down, and the absolute values of the score
lose their meaning. However, FlexE is still able to rank order
structures successfully.
2.4. Protein Data Sets. We have used two different data

sets to evaluate FlexE. The first is a set of proteins that have
been crystallized in two different conformations.23 The second
data set is the set of predictions submitted for refinement in
CASP9 and their corresponding experimental structures as a
test set for our method. For the first data set, the FlexE’s of
relating both structures were compared with random structures
generated to match the same amount of geometric displace-
ment. For the second data set, a comparison was made between
the different predictions and a set of snapshots derived using
MD simulations.

2.5. Alignment. One of the major bottlenecks when it
comes to assessing structural similarity is obtaining an accurate
alignment.40 The RMSD score is measured on the basis of an
optimal alignment, so the score is very sensitive to this
alignment. GDT-TS on the other hand performs multiple
alignments in order to reduce sensitivity to a global alignment.
The major advantage of the FlexE method is that it works in
internal coordinates (distances between Cα), and so it is
independent of superposition artifacts.

3. RESULTS AND DISCUSSION
3.1. FlexE Captures Local and Global Protein

Conformation Changes. In order to understand when the
FlexE score might be useful, we have to understand what kind
of interactions it can capture. The ENM model we used19

captures two kinds of interactions: those that are close in
sequence and more global topological interactions between
residues far apart in sequence. The first one arises from
distortions to the structure that change the relationship
between residues that are sequentially up to three residues
apart. The second one arises from the interactions between
residues that are close in space but far apart in sequence. We
now show a couple of examples that are problematic for
measures such as RMSD and how FlexE can capture these
errors.
There is a well-known problem when using RMSD, where

you can make the wrong protein structure look more native-like
(i.e., have a smaller RMSD to native) by simply making the
wrong structure more compact by simply scaling the
coordinates. For example, the RMSD from the extended to
native structure of 3noh (CASP code TR606), a 123 residue
protein, is 118.5 Å. If we scale all of the atomic positions by a
factor of 0.95, this makes the protein more compact, and the
RMSD is reduced by 6 Å. This error is readily captured by
FlexE. In this example, this increase in compactness increases
the FlexE score by about 1 kcal/mol/residue. Another artificial
example is to place all of the atoms at the center of mass of the
native protein, giving an RMSD of 13.27 Å. However,
performing this same compactification causes the FlexE to
increase dramatically to 380 kcal/mol/residue.
On the other hand, the distance part of the ENM describes

the topology of the protein. That is, how different secondary
structure elements interact with each other. Two highlights are
of importance here: loops that do not have restriction of
movement can be greatly penalized using geometric measure-
ments, whereas FlexE understands that these regions are
flexible and does not penalize deviations as much. On the other
hand, some models have conformations that are randomly
more compact and thus lead to lower geometric values.
However, the interactions between amino acids are not the
correct ones, and thus the FlexE score is observed to increase.
In the following sections, we will describe how these effects
play out when describing real proteins.

3.2. FlexE Can Distinguish Realistic from Nonphysical
Transitions. Imagine two different situations. In case 1,
protein conformation A is the most likely structure in the native
basin, and conformation B is produced by an energetically
feasible thermal fluctuation of A. Let us also assume that A and
B differ by X Å RMSD. Now, let us consider case 2. Again,
conformations A and B differ by X Å RMSD, but now B was
generated from A by some arbitrary physically unrealistic
process rather than as a result of thermal fluctuations. It is
desirable for a structural comparison method to be able to

Figure 2. Creation of an elastic network model. First, the model is
reduced to just the Cα atoms. Next, springs are added for contacts that
are close in sequence (up to i + 3). Finally, springs are added for atoms
that are close in space with a force constant that varies with distance.
The strength of each spring is indicated by the thickness of each line.
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distinguish between case 1 and case 2. We will now show that
FlexE is able to make such a distinction, while RMSD and
GDT-TS are not.
We chose several proteins for which there exist X-ray

structures of two different stable states (see Table 1). The

differences range from less than 2 Å to more than 12 Å (Figure
3). The selected structures span a wide range of sizes (50−800
residues) and topologies. When the pairs of crystal structures
are analyzed, most of the differences fall close to the thermal
threshold as judged by FlexE. We then generated an ensemble
of structures by randomly wiggling the atom positions so that
their RMSD differences were of the same magnitude as the
biologically relevant transition. The FlexE analysis can
distinguish the real biological conformational pairs from the
artificial ones, for the same RMSD (Figure 3) or GDT-TS
(Supporting Information Figure 1) difference.

Interestingly, the random models show a correlation between
both GDT or RMSD and the logarithm of FlexE. That is, for
random displacements from the native structure, FlexE and the
geometric methods provide essentially the same information.
However, certain special, highly collective motions of the
proteincorresponding to physically realistic motionsgive
much lower energies, while still giving high values for the
geometric methods.
The results above indicate that stable structures in proteins

may differ by relatively small energies, even when they differ by
large RMSDs. This follows from a close relationship between
function and flexibility.41−46 FlexE is able to capture these
energetic relationships, while traditional geometric measures
are not.

3.3. FlexE Improves Assessment of Protein Models.
We show here how FlexE can enhance our insights into
prediction errors made of protein structures, such as in CASP,
the blind protein-structure prediction event.24,47 Currently,
predicted protein structures are assessed on the basis of
geometric criteria (GDT-TS, RMSD and SphereGrinder),
agreement with an observed physical constraint (Molprobity),
and side chain metrics (GTS-SC; see ref 24 for definitions). We
will now show some cases from previous CASP events in which
two predicted structures have the same RMSD from the native
but very different FlexE scores and other cases having very
different RMSDs but similar FlexE scores. Supporting
Information Table 1 lists the names of the proteins
corresponding to the examined CASP targets.
The CASP9 refinement data set provides a set of diverse

structures ranging from close to native (around 2 Å RMSD
from native) to far (8 Å RMSD; see Figure 4). For the 14
targets assessed during CASP9,24 we have used FlexE to test the
benefits of a measure that includes protein topology and
flexibility. As a first check, we used models derived from MD

Table 1. Structures Used for Large Motions

target PDB1 PDB2

scallop myosin 1kk7 1kk8
acyl carrier protein 1acp 2fae
aspartate aminotransferase 1ama 8aat
Bcl-xl 1bxl 1ysn
calcium sensor 1k9k 1k9p
calmodulin 1cll 1ctr
cyclin dependent kinase inhibitor 1dc2 2a5e
cystatin 1a67 1cew
hydrolase 1qz3 1u4n
LacRepressor 1lcc 1lqc
LambdaCro 5cro 6cro
lupin hydrolase 1f3y 1jkn
maltose binding protein 1omp 3mbp
Pin1 1f8a 1pin

Figure 3. FlexE can distinguish between experimentally observed and random changes, while RMSD cannot. Each red dot corresponds to an
experimentally observed conformation transition. The black dots are random conformational changes obtained by the wiggling of residues to
produce RMSD scores of the same magnitude. Supporting Information Figure 1 shows similar results for GDT-TS. Maltose binding protein is
depicted on the left and Bcl-xl on the right.
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around the native state for each target. MD models represent a
physically meaningful set of models that describe the thermal
ensemble. Figures 4 and Supporting Information 2−13 show
how the ENM model correctly identifies these models as
belonging to the thermal ensemble, despite having different
RMSD values to the native state.
The only significant exception is 3n70 (CASP code TR567,

see Supporting Information Table 1 for a complete list of
structure names and functions). On close inspection, the
increase of FlexE score is due to a short flexible N-terminal
fragment that is stabilized in a helical conformation by contacts
in the crystal environment and which becomes unstructured
during MD (see Figure 2 from ref 24). This is not a deficiency
of FlexE, which correctly identifies the lost of secondary
structure; it merely reflects the difference between crystal and
simulation conditions. We note that for the rest of structures
the FlexE and MD thermal region overlap significantly.
The initial models that predictors were asked to refine (red

dot in Figure 4 and Supporting Information Figure 2−13) give

information about the suitability of the target for refinement. It
can be seen that target 3nhv (CASP code TR592, see
Supporting Information Table 1) already falls within the
thermal ensemble, and 3n70 is close to this threshold as well, so
these targets are likely difficult to improve. Additionally, the
starting model for 3n70 is below the MD thermal ensemble
(see above paragraph). When a structure falls within the
thermal ensemble of the native structure, it may not be useful
to attempt to further improve it because it is already essentially
the same as the native structure. Inside FlexE, this can be
monitored by defining a lower threshold for the thermal
ensemble (we used 300 K for this example to match MD data;
lower temperatures will result in tighter ensembles). In
particular, many experimental structures are solved at lower
temperatures, so the ensembles would be narrower than those
depicted in Figure 4.
Looking at the actual model submissions, RMSD and

log(FlexE score) show a certain degree of correlation (see
Figure 4 and Supporting Information Figure 2−13). In
particular, two behaviors are observed for starting models that
are geometrically close or far from the native state. In the first
scenario, small geometric improvements on the initial model
are achieved, but those that improve the RMSD have a
significant improvement in FlexE score. Most predictor groups
have problems improving the initial models in this conditions,
and in fact most groups make the structure worse (see 3nhv in
Figure 4). In the second scenario, we have the opposite trend.
Many groups are able to improve on the geometry significantly,
but the FlexE score improvement is not as good (see 3nkl
(CASP code TR622, see Supporting Information Table 1) in
Figure 4). The first scenario is able to improve in details
(correct topology and contacts), whereas for the second
scenario the improvement comes from large conformational
changes that bring residues in the vicinity of where they are
supposed to be (but not necessarily forming the right contacts).
If we think on a funnel-like potential energy surface48 that
guides proteins to the native conformation, when starting near
the native, it should be very easy to follow the gradient
improving the structure, and the further away we start, the
gradient would be smaller. However, we observe that most
methods have the opposite tendency. From an entropic point
of view, the number of available conformations increases with
increasing RMSD. In particular, for RMSD = 0.0 Å there is only
one conformation available. So there are many more
possibilities to make the structure worse by X Å than improve
it by the same amount. From a physics point of view, it could
also be telling us that the potential energy surface used for
refinement is very crude or that sampling has not been achieved
by following a physical potential. More physics-driven refine-
ment coupled to current methodologies could make for more
accurate refinement.
Finally, we show three examples where using geometry alone

would be misleading to judge the quality of the models. First,
Figure 5 shows models with the same geometric score but
different FlexE scores. The core part of the structure, which has
intertwining β sheets and a small α helix, is mostly correct in
both the models. Those regions have small energy differences.
However, the two models differ in the upper part of the
structure, where Figure 5 shows large energy differences from
FlexE. From a geometric point of view, the two models are
fairly equivalent because both predicted loops seem equally
good or bad. FlexE shows that the model on the left has a more
native-like topology and therefore a lower FlexE score.

Figure 4. FlexE score per residue vs RMSD for three CASP9 proteins.
MD ensembles (yellow circles) from 200 structures extracted from the
last 1 ns of a 12 ns trajectory in explicit water starting from the native
structure are shown to exemplify the thermal ensemble. The starting
model that CASP participants were given to refine is shown in red.
Black crosses represent structures submitted by different groups during
CASP9. FlexE and RMSD scores are obtained by comparing to the
native structure, which would be at RMSD = 0 and FlexE = 0. The
gray area denotes the thermal region around 3/2kBT. The notations
TR567, TR592, and TR622 refer to three different refinement targets
during CASP9; for reference, the PDB code is also given.
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Second, Figure 6 shows two structures having the same FlexE
score and different RMSDs. The loop indicated by the arrow

can be open or closed. While RMSD comparison would
indicate that the structure on the right is worse, we think the
better interpretation from FlexE is that the loop is sufficiently
floppy that both structures should be judged as equivalent
predictions.
Third, Figure 7 shows a situation in which FlexE and RMSD

disagree about which prediction is best. The leftmost structure

has the lowest RMSD because of the good packing of the helix
on top. However, FlexE does not “like” that structure, which is
a β strand in the native structure. FlexE captures the energetic
cost of breaking the hydrogen bond involved in the α helix and
forming the β sheet.

4. FLEXE COMPARES PROTEIN STRUCTURES BY
ENERGIES AND COMPLEMENTS COMPARISONS BY
RMSDS

We have introduced FlexE, a computational method for
comparing two structures of a protein. It computes an elastic
deformation energy from one structure A to the other B based
on the Elastic Network Model, but in principle, any other
energy function could be used. Such comparisons give insights
that can complement comparisons of structure that are based
on geometric measures such RMSD or GDT-TS. We show
ways that these methods are complementary. One example is a
floppy loop. Suppose two researchers predict that loop to be in
two different conformations. In a CASP event, the researcher
finding the lowest RMSD would be judged best. But if the
FlexE score shows that the two loops have the same energy, it
implies that both loop conformations are equally good. Or,
suppose that two researchers predict two structures having the
same RMSD to native. They would be judged to be equally
good predictions. But, if they have very different FlexE scores,
we show cases where we argue the better prediction is the one
with the lower value of this energy score. In particular, we show
that FlexE has the capability of recognizing when two structures
are both true stable states of a protein versus when the two
structures are generated by nonphysical processes. We believe
FlexE will be useful for getting added insights when comparing
protein structures.
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