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formed protein–DNA complex (3 µl) was mixed with 3 µl of reservoir
solution containing 15% (w/v) PEG 4000, 100 mM 2-(N-
Morpholino)ethanesulfonic acid (MES), pH 6.0, 100 mM NH4H2PO4

and 15% (v/v) ethyleneglycol. Crystals grew in 6–9 d as needles of
0.05 × 0.05 × 1 mm3. Crystal parameters are indicated in Table 1.
Crystals were harvested and directly flash-frozen in liquid nitrogen.
Data from two crystals were collected at 110 K at beamline X11 at
DESY Hamburg on a CCD detector (MarResearch). Data were inte-
grated with DENZO/SCALEPACK20.

Structure determination and refinement. The structure of the
ZαDLM–Z-DNA complex was solved by molecular replacement using
the program EPMR21 with the ZαADAR–Z-DNA complex (chains C and
F; PDB code 1QBJ) as the search model (with Ala residues substitut-
ed for all solvent-exposed and additional nonidentical protein
residues). Molecular replacement produced one clear solution per
asymmetric unit. The correctness of this solution was judged by a
quick drop of both R-factor and Rfree after an initial round of rigid
body and positional refinement, and by the formation of Watson-
Crick base-paired dsDNA by crystallographic symmetry operations.
Refinement was initially performed with CNS14 using standard pro-
tocols. Model building and adjustments were done with vuSette zc
(M.A. Rould, unpublished program). The model was inspected man-
ually with σA-weighted 2Fo – Fc and Fo – Fc maps, and progress in the
model refinement was gauged by the decrease in the Rfree. After
CNS refinement converged at R-factor / Rfree 25.2 / 27.9%, further
refinement was carried out with the program Refmac5 (ref. 22). TLS
refinement23,24 improved both R-factor and Rfree significantly. The
selection of an optimal set of TLS groups was crucial. Each base-
paired nucleotide was divided in three segments – the ribose, the
phosphorus atom plus both nonesterified oxygens and the base.
ZαDLM was treated as one TLS group. Refinement statistics are in
Table 1.

Coordinates. Atomic coordinates have been deposited in the
Protein Data Bank (accession code 1J75)
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What is the mechanism of two-state protein folding? The
rate-limiting step is typically explored through a Φ-value,
which is the mutation-induced change in the transition state
free energy divided by the change in the equilibrium free
energy of folding. Φ-values ranging from 0 to 1 have been
interpreted as meaning the transition state is denatured-like
(0), native-like (1) or in-between. But there is no classical
interpretation for the experimental Φ-values that are nega-
tive or >1. Using a rigorous method to identity transition
states via an exact lattice model, we find that nonclassical 
Φ-values can arise from parallel microscopic flow processes,
such as those in funnel-shaped energy landscapes. Φ < 0
results when a mutation destabilizes a slow flow channel,

causing a backflow into a faster flow channel. Φ > 1 implies
the reverse: a backflow from a fast channel into a slow one.
Using a ‘landscape mapping’ method, we find that Φ corre-
lates with the acceleration/deceleration of folding induced by
mutations, rather than with the degree of nativeness of the
transition state.

What is the folding mechanism of fast folding proteins? Many
proteins fold and unfold rapidly with single-exponential (two-
state) kinetics1–5. Rate processes that involve a single-exponential
relaxation in both the forward and reverse directions have been
traditionally interpreted in terms of rate limiting steps, called tran-
sition states (TS). This raises the question of what are the transi-
tion states for protein folding5–8. To determine them, classical rate
theory suggests searching for structures associated with an energy
or entropy barrier along a reaction coordinate. However, protein
folding may be so fundamentally different from classical rate
processes that there is no single microscopic reaction coordinate
— that is, an ordered list of structures — that every chain follows9,
and there may not be identifiable barriers of the traditional type,
because these landscapes may be funnel-shaped. The questions of
folding mechanism then become (i) what chain conformations are
responsible for the observable relaxation rate, (ii) how do they
cause this rate, and (iii) what is the experimental evidence?

The main experimental methodology for addressing this ques-
tion has been mutational studies of folding rates and equilibrium
constants10–13. This methodology, developed as Φ-value analysis
by Alan Fersht and his colleagues13–15, has been widely applied to
many different proteins2,16–18. In Φ-value analysis, a particular
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amino acid is mutated. If the mutation changes the stability of
the protein by an amount ∆∆G (where ∆G = G

N
– G

D
, N and D

refer to native and denatured states, respectively, and the first ∆
refers to the change in stability that arises from the mutation),
and if the mutation affects the folding barrier by an amount
∆∆G‡, then the Φ-value is:

Φ = ∆∆G‡ / ∆∆G (1)

Φ as a ‘kinetic ruler’ of nativeness of the transition state
Interpretations of Φ-values are invariably based on Brønsted
theory and the Hammond postulate of classical chemical reac-
tions19. For protein folding, Φ is usually regarded as a sort of
‘kinetic ruler’ indicating how native-like the transition state con-
formation of a monomer is; “a Φ-value of 0 indicates that the
structure is unfolded at the site of mutation as much as in the
denatured state, and a Φ-value of 1.0 means that the structure is
folded at the site of mutation as much as in the native state”19.
Fractional values of Φ are taken to signify that structure is pre-
sent but weakened19.

Typically, the nativeness of the transition state is defined by the
coordinate ξ, where ξ = 0 refers to denatured conformations,
and ξ = 1 to the native conformation. The kinetic ruler hypothe-
sis means that Φ is monotonically related to ξ; however, this does
not necessarily imply that the relationship is linear19. For exam-
ple, if a kinetic ruler was linear, then Φj = 0.75 would mean that
ξ = 0.75 — that is, that amino acid j is 75% native when the pro-
tein is in its transition state.

The kinetic ruler hypothesis, which is deeply rooted in classical
rate theories, has an important implication. For any one-dimen-
sional quantity, such as a nativeness coordinate, there is the
notion of ‘betweenness’. That is, for some particular point ξ
along the coordinate between D and N (ξD < ξ < ξΝ), the confor-
mations ξ are more native than D and more denatured than N.
All protein conformations can be lined up along a single axis of
nativeness, and somewhere along this axis will be transition state
conformations ξ that are responsible for the single exponential
time constant. It follows that the transition state must be between

the native and denatured states. That is, the kinetic ruler assump-
tion implies that there cannot be nonclassical Φ values: Φ < 0
would have the nonsensical meaning that the transition state is
more denatured than the denatured state, and Φ > 1 would mean
that the transition state is more native than the native state itself.
Therefore, when nonclassical values are observed in experiments,
they are typically dismissed as artifacts. However, 10–20% of the
hundreds of measured Φ-values for protein folding are outside
this classical range20–23. In addition, Φ-values as large as 8 have
been measured (T. Logan, pers. comm.). Negative Φ-values have
also been observed in computer simulations24–27, where they have
been interpreted in terms of nonnative contacts.

Here we show, using an exact lattice model, that there is a
broader physical basis for nonclassical values, Φ < 0 and Φ > 1.
We find that although classical Φ-values are restricted to systems
having a single reaction coordinate, nonclassical Φ-values can
arise from parallel, coupled flows — for example, in funnel-
shaped energy landscapes9,28.

Model
Our aim is to explore a model of folding that meets certain mini-
mal requirements. First, having a model that has single exponen-
tial folding is essential for studying two-state kinetics. Second, we
wanted a model that, unlike classical mass-action models, specif-
ically examines individual chain conformations and sequence-
structure relationships and whose folding is directed toward a
unique native state by an energy function — that is, a statistical
mechanical model. Only in this manner can we draw conclusions
about folding at the level of individual chain conformations.
Third, we wanted a model of sufficient simplicity to be able to
obtain the kinetics completely and rigorously, without ad hoc
assumptions about the transition state.

Currently, the only models that meet these requirements are
short chain lattice Go models. Go models are the principal theo-
retical models for exploring microscopic steps in two-state pro-
tein folding kinetics29. In this type of model, each native contact
has an attractive potential ε. We studied the 16-mer on two-
dimensional square lattices (Fig. 1). The denatured state is all

Fig. 1 Folding kinetics of a lattice model
chain. The top row shows the high energy,
high entropy conformations at the top of
the funnel. Lower rows represent lower
energy, lower entropy conformations deep-
er on the landscape. The bottom is the
native (N) conformation. Channel I is the
fast route, and channel II is slower. The
boxed nonnative structures are the rate lim-
iting steps for these channels, found from
landscape mapping (see text).
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possible self-avoiding walks except for the native conformation.
Self-avoiding walks are configurations in which no two
monomers occupy the same lattice site. The native state has the
lowest possible energy, with the nine native contacts A through I
(Fig. 1). Each rate constant for the transition from the jth confor-
mation to the ith is:

Aij = exp (–∆Gij/RT) (2)

where ∆Gij =exp (– ν <(∆rij)2>1/2) exp (– (qi – qj) ε H(qi,qj) / RT), qi

is the number of native contacts in conformation i, <(∆rij)2>1/2 is
the root mean square (r.m.s.) deviation in the residue coordinates
of the two conformations evaluated after their optimal superim-
position, ν is a scaling parameter penalizing/favoring the transi-
tions between dissimilar/similar conformations, and H(qi,qj) is
the Heavyside step function, equal to 1 for qi > qj and zero other-
wise. Here, we use ε = – 2.5 RT and ν = 1. Bonds have unit length,
and we use ε′ = – 1.75 RT for mutations of native contacts.

Treatment of kinetics
The time evolution of the conformational ensemble is controlled
by the master equation:

dP(t) / dt = A P(t) (3)

where P(t) is the N-dimensional vector of the instantaneous
probabilities of the N conformations, and A is the N × N transi-
tion matrix. We find the instantaneous probabilities of the indi-
vidual conformations by simultaneous solution of these 
N equations, which gives:

P(t) = exp (–At) P(0) = exp (–�t) B–1 P(0) (4) 

where P(0) is the vector of initial probabilities, � is the diagonal
matrix of the eigenvalues of A and B is the matrix of eigenvectors.
We find the exact kinetics of the model without resorting to
assumptions or to limited sampling, such as Monte Carlo. Crucial
to our present study is the application of a general, rigorous and
unambiguous method to identify the rate limiting steps30. The
lowest nonzero eigenvalue represents the frequency of the slowest
transition mode that contributes to the folding process. The
eigenvector that corresponds to this eigenvalue (relaxation time)
describes the populations responsible for the single exponential,
and hence these populations are rigorously what should be called
transition state conformations.

Folding routes of model proteins. 
In the resultant folding routes for a model protein, the native
structure emerges systematically, with a single relaxation time,
through multiple coupled microscopic routes (Fig. 1). In terms
of the individual chain conformations, folding does not follow a
single sequential pathway. The native structure of the protein has
the two-dimensional lattice model equivalent of a two-stranded
antiparallel β-sheet adjacent to a helix. The folding process

involves two main routes. Along the dominant folding channel I,
the fastest folding with greatest flux, the rate limiting step has the
native helix and the first but not the second strand. Along chan-
nel II, which is slower than I and has smaller flux, the rate limit-
ing structure has a partial or complete helix and the full sheet,
but the two secondary structures are not yet assembled together.
Channel II resembles the diffusion-collision model of Karplus
and Weaver31. An experimental example of parallel flow channels
that involves a rapid helix formation and a slower β-sheet forma-
tion is lysozyme32.

Physical basis for nonclassical Φ-values 
By definition, a negative Φ-value would mean that a mutation
that destabilizes the native state speeds up folding. In the model,
destabilizing contact G (reducing the attractive potential by
30%) gives Φ = –0.36. The mutation destabilizes the β-sheet,
slows the flow through channel II and causes increased helical
populations in channel I; the overall folding flow rate via chan-
nel I increases (Fig 2). All the β-sheet contacts have negative 
Φ-values (Table 1). Synergistic effects such as this have been
observed in other simulations27,33.

The explanation for Φ > 1 is the reverse. Destabilizing a contact
in the fast channel redirects the flow through the slow channel.
When the contact D is weakened by 30%, Φ = 0.99. When D is
weakened by 50%, Φ = 1.38. We conclude that nonclassical Φ-val-

Fig. 2 A negative Φ-value is defined as an acceleration of folding follow-
ing a destabilizing mutation. Destabilizing (increasing the energy) of a
step in the slow flow channel (II) rechannels the flow into the faster
channel (I). a, Rate limiting conformational steps along channels I and II.
b, For wild type protein, greater population and faster flow is along
route I. c, Mutant protein has a destabilized energy well (right side),
forcing more population of channel I. Hypothetical populations of 7:3
shifted to 9:1 illustrate a Φ-value of approximately –0.30.

a

b c

Table 1 Φ-values resulting from 30% 
destabilization of native contacts

Type of native contact Φ-value
A 0.012
B 0.096
C 0.251
D 0.990
E 0.093
F 0.035
G –0.357
H –0.296
I –0.085
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ues can identify parallel routes in folding pathways and are not
experimental artifacts. Because models that are based on assum-
ing single reaction coordinates and sequential paths cannot
explain nonclassical Φ-values, we believe that experimental obser-
vations of nonclassical Φ-values give evidence of protein folding
steps that are not sequential.

Is Φ a kinetic ruler for folding events?
What is the physical meaning of a Φ-value? For folding land-

scapes that have multiple microscopic reaction coordinates,
such as funnels, there is no single quantity ξ that applies at the
same time to all microscopic trajectories. Thus, there is no
kinetic ruler, and no obvious structural property that will be
related monotonically to the measurable property Φ. Therefore,
we devised a general computational experiment, called land-
scape mapping, to find a physical explanation of the Φ-values
on our energy landscapes. If a classical chemical reaction could
be initiated from any specific point along its reaction coordi-
nate, and the time required to reach the product from that point
is measured, an unambiguous measure of reaction progress
would be obtained. For example, if molecules are forced to have
reactant-like structures (before the transition state) and are
then allowed to proceed to react from that point, the time to
product will be long. However, if molecules are forced into con-
formations that are highly product-like (after the transition
state), the time to product will be short. By fixing molecular
structures into specific conformations, starting the reaction and
then measuring the time to product, you could map out the
kinetic distances between conformations. We do this here for
our folding model.

Terms that are pertinent to our model are defined below. A
‘conformation’ (or ‘microconformation’) is a single arrange-
ment of chain monomers in space. For the 16-mer on a square
lattice, the total number of conformations is 802,075. A ‘micro-
route’ is one particular trajectory between two conformations, i
and j, with single microscopic rate constant kij. A ‘macroconfor-
mation’ is the ensemble of all conformations having a particular
specified set of contacts. We have a total of 267 macroconforma-
tions, including the native state. A ‘macroroute’ between two
macroconformations, m and n, is the collection of all micro-

routes from the one macroconformation to the other. The ‘pas-
sage time’ (τmn) between macroconformations, found from the
best fit single exponential, is faster than 1 / kij because the
macroroute includes all direct and indirect microroutes
between the two macroconformations. Two macroconforma-
tions are ‘successive’ if they differ by one additional contact. For
example (GH) and (GHI) along channel II (Fig. 1) are two suc-
cessive macroconformations.

In landscape mapping, we fix m native contacts, giving an ini-
tial macroconformation. At time t = 0, folding is initiated from
that ensemble. We measure the passage time τmn required to
reach the successive macroconformation n along a particular
macroroute. Not surprisingly, the more native-like the starting
ensemble, the shorter is the time required to reach the native state
(Fig. 3). Because the energy difference between conformations m
and n on the landscape is the logarithm of passage time τmn, we
have Eact, mn = – RT ln kmn, where the stepwise macroroute rate
constant is kmn = 1 / τmn (inset of Fig. 3).

Fig. 3 Landscape mapping. A chain is put into a specific conformation
with m native contacts before time t = 0. Folding is initiated at t = 0. The
passage time required for each single step transition between macrocon-
formations is computed. The y-axis shows the cumulative time to reach
the native state, which is the sum of times for the individual steps.
Preforming the helix (I) speeds up folding more than preforming the 
β-sheet (II). Inset: The logarithms of the individual step rates km map the
relative energies on the landscape. For example, the barrier along the 
β-sheet route is higher than for the helix route.

a

b

Fig. 4 Correlation of Φ with τmut and τwt. a, Φ correlates only weakly with
a kinetic ruler property, <τwt>, the average folding time required to reach
the native state. b, Φ correlates more strongly with gatekeeping, 
<τmut> / <τwt>, the change in folding time due to the mutation.
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Macroroutes have barriers; microroutes do not
These simulations lead to the following conclusions. First, there
is a fundamental difference between microroutes and macro-
routes, and a fundamental difference between conformations
and macroconformations. Even though the microroutes have
no barrier and follow funnel-like landscapes, the macroroutes
do have kinetic barriers. This results from a balance of two
effects: (i) the velocity of conformational changes (along
microroutes) increases monotonically down the landscape, but
(ii) the number of microroutes diminishes down the landscape.
The product of these two factors leads to bottleneck steps along
the macroroutes. The maximum time per step (Fig. 3) identi-
fies the slowest macrosteps, which are those having m = 6 and 5
native contacts along channels I and II, respectively. This barri-
er results from a property of the landscape, and not from a
property of a microroute. The barrier is due to a reduction in
the numbers of routes at the bottom of the energy funnel, and
not to an energetic problem along any one microroute, in these
simulations.

Folding involves nucleated zipping
Second, we see a broad heterogeneity of rates if the chain is
started from a partially formed conformation. Often the native
state is reached faster by starting from a particular set of two
native contacts than when started from some other set of six
native contacts. The nonuniqueness of the folding nucleus was
first established in a model system that shows kinetic partition-
ing similar to the present model34. The heterogeneity results
because partially formed conformations are typically commit-
ted to a given folding route and must find uphill routes on the
energy landscape in order to reach fast downhill folding routes.
In contrast, open conformations almost always flow rapidly
downhill.

We mapped the full landscape; we tested every possible starting
set of native contacts. Our results can be interpreted using two
ideas. (i) As noted by many previous investigators35–39, there are
folding nuclei — that is, certain sets of contacts that provide much
greater kinetic accessibility to the native state than others. (ii) The
sequences of folding events are zippers40: on average, the most local
contacts form first, secondary structures form sequentially and
nonlocal contacts form later, in a series of minimum conforma-
tional entropy-loss steps.

Finally, we conclude that Φ-values are not kinetic rulers of the
progress toward the native state — for example, the Φ-value for
contact k shows little correlation with the average time <τwt>k

required for stabilizing the contact k in the folding of the wild
type protein. The correlation coefficient is 0.39 (Fig. 4a). In con-
trast, Φ-values correlate with the change in rates caused by
mutations (Fig. 4b). Sites having positive Φ-values indicate
where destabilizing mutations decelerate folding. Negative 
Φ-values indicate where destabilizing mutations accelerate fold-
ing. The absolute value, |Φ|, defines ‘gatekeeper’ contacts — that
is, the degree to which a contact controls the flow process

towards the native state. Sites having |Φ| >> 0 are gatekeepers;
sites with Φ ∼ 0 have little flow control. Classical Φ-values result
when opening a gate controls a forward flow. Nonclassical Φ-val-
ues result when opening a gate controls a backflow, resulting in a
redirection of the folding flow through some alternative macro-
routes. In principle, the landscape mapping strategy used here is
also feasible for experimental determinations of the shapes of
folding energy landscapes.
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