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3.1 Introduction

A view that emerges from many studies is that proteins possess a tend-
ency, encoded in their three-dimensional (3D) structures, to reconfigure into
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functional forms, that is, each native structure tends to undergo conform-
ational changes that facilitate its biological function. An efficient method
for identifying such functional motions is normal mode analysis (NMA), a
method that has foundwidespread use in physical sciences for characterizing
molecular fluctuations near a given equilibrium state. The utility of NMA as
a physically plausible andmathematically tractable tool for exploring protein
dynamics has been recognized for the last 20 years [1, 2]. With recent increase
in computational power and speed the application of NMA to proteins has
gained renewed interest and popularity.
Contributing to this renewed interest in utilizing NMA has been the

introduction of simpler models based on polymer network mechanics. The
Gaussiannetworkmodel (GNM) is probably the simplest among these. This is
an elastic network (EN) model introduced at the residue level [3, 4], inspired
by the full atomic NMA of Tirion with a uniform harmonic potential [5].
Despite its simplicity, the GNM and its extension, the anisotropic network
model (ANM) [6], or similar coarse-grained ENmodels combinedwithNMA
[7–9], have found widespread use since then for elucidating the dynam-
ics of proteins and their complexes. Significantly, these simplified NMAs
with EN models have recently been applied to deduce both the machinery
and conformational dynamics of large structures and assemblies including
HIV reverse transcriptase [10, 11], hemagglutinin A [12], aspartate transcar-
bamylase [13], F1 ATPase [14], RNA polymerase [15], an actin segment [16],
GroEL-GroES [17], the ribosome [18, 19], and viral capsids [20–22].
Studying proteins with the GNM provides more than the dynamics of

individual biomolecules, such as identifying the common traits among the
equilibrium dynamics of proteins [23], the influence of native state topology
on stability [24], the localization properties of protein fluctuations [25], or
the definition of protein domains [26, 27]. Additionally, GNM has been used
to identify residues most protected during hydrogen–deuterium exchange
[28, 29], critical for folding [30–34], conserved among members of a given
family [35], or involved in ligand binding [36].
The theoretical foundations of the GNM will be presented in this chapter,

alongwith a fewapplications that illustrate its utility. The following questions
will be addressed. What is the GNM?What are the underlying assumptions?
How is it implemented? Why and how does it work? How does the GNM
analysis differ from NMA applied to EN models? What are its advantages
and limitations compared to coarse-grained NMA? What are the most signi-
ficant applications and prospective utilities of the GNM, or the ENmodels in
general?
To this end, the chapter begins with a brief overview of conformational

dynamics and the relevance of such mechanical motions to biological func-
tion. Section 3.2.1 is devoted to explaining the theory and assumptions of
the GNM as a simple, purely topological model for protein dynamics. The
casual reader may elect to skip over Sections 3.2.2 to 3.2.4 where the deriv-
ation of the GNM is presented using fundamental principles from statistical
mechanics. In Section 3.3, attention is given to how the GNM is implemented
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(Section 3.3.1), and to what extent it can be or cannot be applied to proteins
in general. An interpretation of the physical meaning of both fast and slow
modes is presented (Section 3.3.2) with examples for a small enzyme, ribo-
nuclease T1. Section 3.3.3 describes how the GNM differs from the ANM
(i.e., from the NMA of simplified EN models) and discusses when the use
of one model is preferable to the other. Finally, results are presented in
Sections 3.3.4 and 3.3.5 for twowidely different applications: specificmotions
of supramolecular structures and classification of motions in general through
the iGNM online database of GNM motions. The chapter concludes with
a discussion of potential future uses.

3.1.1 Conformational Dynamics: A Bridge Between
Structure and Function

With recent advances in sequencing genomes, it has become clear that the
canonical sequence-to-function paradigm is far from being sufficient. Struc-
ture has emerged as an important source of additional information required
for understanding the molecular basis of observed biological activities. Yet,
advances in structural genomics have now demonstrated that structural
knowledge is not sufficient for understanding the molecular mechanisms of
biological function either. The connectionbetween structure and functionpre-
sumably lies in dynamics, suggesting an encoding paradigm of sequence to
structure to dynamics to function.
Not surprisingly, a major endeavor in recent years has been to develop

models and methods for simulating the dynamics of proteins, and relating
the observed behavior to experimental data. These efforts have been largely
impeded, however, by thememoryand timecost ofmoleculardynamics (MD)
simulations. These limitations are particularly prohibitive when simulating
the dynamics of large structures or supramolecular assemblies.

3.1.2 Functional Motions of Proteins Are Cooperative Fluctuations
Near the Native State

While accurate sampling of conformational space is a challenge for macro-
molecular systems, the studyofproteindynamicsbenefits fromagreat simpli-
fication: proteinshaveuniquelydefinednative structuresunderphysiological
conditions, and they are functional only when folded into their native con-
formation. Therefore, while the motions of macromolecules in solution are
quite complex and involve transitions between an astronomical number of
conformations, those of proteins near native state conditions are much sim-
pler, as they are confined to a subset of conformations, ormicrostates, near the
folded state. These microstates usually share the same overall fold, second-
ary structural elements, andeven tertiary contactswithin individualdomains.
Typical examples are the open and closed forms of enzymes, usually adopted
in the unliganded and liganded states, respectively. Exploring the fluctuation
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dynamics of proteins near native state conditions is a first step toward gaining
insights about themolecular basis andmechanismsof their function; andfluc-
tuation dynamics can be treated to a good approximation by linear models
— such as NMA.
Another distinguishable property of protein dynamics — in addition to

confinement to a small subspace of conformations— is the collective nature of
residue fluctuations. The fluctuations are indeed far from random, involving
the correlated motions of large groups of atoms, residues, or even entire
domains or molecules whose concerted movements underlie biological func-
tion. An analytical approach that takes account of the collective coupling
between all residues is needed, and again NMAemerges as a reasonable first
approximation.

3.2 The Gaussian Network Model

3.2.1 A Minimalist Model for Fluctuation Dynamics

Most analytical treatments of complex systems dynamics entail a comprom-
ise between physical realism and mathematical tractability. A challenge is to
identify the simplest, yet physically plausible, model that retains the phys-
ical and chemical characteristics, which are needed for the time and length
scales of interest. Clearly, as the size and length scales of the processes of
interest increase, it becomes unnecessary to account for many of the micro-
scopic details in the model. The inclusion of these microscopic details could,
on the contrary, tend to obscure the dominant patterns characterizing the
biological function of interest.
TheGNMwasproposedbyBahar et al. [3]within suchaminimalistmindset

to explore the role and contribution of purely topological constraints, defined by
the 3D structure, on the collective dynamics of proteins. Inspired by the sem-
inalwork of Flory and collaborators applied to polymer gels [37], each protein
is modeled by an EN (Figure 3.1), the dynamics of which is entirely defined
by network topology. The position of the nodes of the EN are defined by the
Cα-atom coordinates, and the springs connecting the nodes are representative
of the bonded and nonbonded interactions between the pairs of residues loc-
ated within an interaction range, or cutoff distance, of rc. The cutoff distance
is usually taken as 7.0 Å, based on the radius of the first coordination shell
around residues observed in PDB structures [38, 39].

3.2.2 GNM Assumes Fluctuations Are Isotropic and Gaussian

If we define equilibrium position vectors of a node, i, by R0
i , and the instant-

aneous position by Ri, the fluctuations, or deformations, from this mean
position can then be defined by the vector �Ri = Ri − R0

i . The fluctuations
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FIGURE 3.1
(See color insert following page 136) Description of the GNM. (a) Schematic representation of
the equilibrium positions of the ith and jth nodes, R0i and R

0
j , with respect to a laboratory-fixed

coordinate system (xyz). The instantaneous fluctuation vectors, �Ri and �Rj , are shown by the
dashed arrows, along with the instantaneous separation vector Rij between the positions of the
two residues. R0ij is the equilibrium distance between nodes i and j. (b) In the EN of GNM every
residue is represented by a node and connected to spatial neighbors by uniform springs. These
springs determine the N − 1 degrees of freedom in the network and the structure’s modes of
vibration. (c) Threedimensional imageofheneggwhite lysozyme (PDBfile 1hel [46]) showing the
Cα trace. Secondary structure features are indicated by pink for helices and yellow for β-strands.
(d) Using a cutoff value of 10 Å, all connections between Cα nodes are drawn for the same
lysozyme structure to indicate the nature of the EN analyzed by GNM.

in the distance vector Rij between residues i and j, can in turn be expressed
as �Rij = Rij −R0

ij = �Rj −�Ri (Figure 3.1[a]). By assuming that these fluc-
tuations are isotropic and Gaussian we can write the potential of the network
of N nodes (residues), VGNM, in terms of the components�Xi, �Yi, and�Zi
of �Ri, as

VGNM = γ

2


 N∑

i,j

�ij[(�Xi −�Xj)
2 + (�Yi −�Yj)

2 + (�Zi −�Zj)
2]


(3.1)



BICH: “c472x_c003” — 2005/10/19 — 20:45 — page 46 — #6

46 A.J. Rader et al.

where �ij is the ijth element of the Kirchhoff (or connectivity) matrix of inter-
residue contacts defined by

�ij =



−1, if i �= j and Rij ≤ rc
0, if i �= j and Rij > rc
−
∑
j,j �=i

�ij, if i = j
(3.2)

and γ is the force constant taken to be uniform for all network springs.
Expressing the X-, Y-, and Z-components of the fluctuation vectors �Ri as
three N-dimensional vectors �X,�Y, and �Z, Equation (3.1) simplifies to

VGNM = γ

2
[�XT��X +�YT��Y +�ZT��Z] (3.3)

where �XT, �YT, and �ZT are the row vectors [�X1,�X2, . . . ,�XN ],
[�Y1,�Y2, . . . ,�YN ], and [�Z1,�Z2, . . . ,�ZN ], respectively. The total poten-
tial can alternatively be expressed as

VGNM = γ

2
[�RT(� ⊗ E)�R] (3.4)

where �R is the 3N-dimensional vector of fluctuations, �RT is its trans-
pose, �RT = [�X1,�Y1, . . . ,�ZN ], E is the identity matrix of order 3, and
(� ⊗ E) is the direct product of � and E, found by replacing each element �ij
of � by the 3× 3 diagonal matrix �ijE. One should note that by construction
the eigenvalues for this 3N × 3N matrix, � ⊗ E, are threefold degenerate.
This degeneracy arises from the isotropic assumption, further explored in the
following section.

3.2.3 Statistical Mechanics Foundations of the GNM

Whatwe are primarily interested in is determining themean-square (ms) fluc-
tuations of a particular residue, i, or the correlations between the fluctuations
of two different residues, i and j. These respective properties are given by

〈�Ri ·�Ri〉 = 〈�X2
i 〉 + 〈�Y2

i 〉 + 〈�Z2i 〉 (3.5)

and
〈�Ri ·�Rj〉 = 〈�Xi�Xj〉 + 〈�Yi�Yj〉 + 〈�Zi�Zj〉 (3.6)

Thus, if we know how to compute the component fluctuations 〈�X2
i 〉 and〈�Xi�Xj〉 then we know how to compute the residue fluctuations and their

cross-correlations.
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In the GNM, the probability distribution of all fluctuations, P(�R) is
isotropic (Equation [3.7]) and Gaussian (Equation [3.8]), that is,

P(�R) = P(�X,�Y,�Z) = p(�X)p(�Y)p(�Z) (3.7)

and

p(�X)∝ exp
{
− γ

2kBT
�XT��X

}

∝ exp

{
−1
2

(
�XT

(
kBT
γ

�−1
)−1

�X

)}
(3.8)

where kB is the Boltzmann constant andT is the absolute temperature. Similar
forms apply to p(�Y) and p(�Z). �X = [�X1,�X2, . . . ,�Xi, . . . ,�XN ] is
therefore a multidimensional Gaussian random variable with zero mean and
covariance (kBT/γ )�−1 in accord with the general definition [40]

W(x,µ,�) = 1
(2π)N/2|�|1/2 exp

{
−1
2
(x − µ)T�−1(x − µ)

}
(3.9)

for multidimensional Gaussian (normal) probability density function asso-
ciated with a given N-dimensional vector x having mean vector µ and
covariance matrix�. Here, the term in the denominator, (2π)N/2|�|1/2, is the
partition function that ensures the normalization ofW(x,µ,�) upon integra-
tion over the complete space of accessible x, and |�| is the determinant of �.
Similarly, the normalized probability distribution p(�X) is

p(�X) = 1
ZX

exp

{
−1
2

(
�XT

(
kBT
γ

�−1
)−1

�X

)}
(3.10)

where ZX is the partition function given by

ZX =
∫
exp

{
−1
2

(
�XT

(
kBT
γ

�−1
)−1

�X

)}
d�X = (2π)N/2

∣∣∣∣kBTγ �−1
∣∣∣∣
1/2

(3.11)

In theGNM, thedeterminant of theKirchhoffmatrix is zero, and the inverse,
�−1, which scaleswith the covariance, cannot therefore be directly computed.
�−1 is found instead by eigenvalue decomposition of � and reconstruction
of the inverse using the N − 1 nonzero eigenvalues and associated eigen-
vectors. The same expression in Equation (3.11) is valid for ZY andZZ such
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that the overall GNMpartition function (or configurational integral) becomes

ZGNM = ZXZYZZ = (2π)3N/2
∣∣∣∣kBTγ �−1

∣∣∣∣
3/2

(3.12)

Nowwehave the statisticalmechanical foundations towrite the expectation
values of the residue fluctuations, 〈�X2

i 〉 and correlations, 〈�Xi�Xj〉. It can
be verified that theN×N covariancematrix 〈�X�XT〉 is equal to (kBT/γ )�−1,
using the statistical mechanical average1

〈�X�XT〉 =
∫
�X�XTp(�X)d�X = kBT

γ
�−1 (3.13)

Because

〈�X�XT〉 = 〈�Y�YT〉 = 〈�Z�ZT〉 = 1
3 〈�R�RT〉 (3.14)

we obtain

〈�R2
i 〉=

3kBT
γ

(�−1)ii

〈�Ri ·�Rj〉= 3kBT
γ

(�−1)ij
(3.15)

as the ms fluctuations of residues and correlations between residue fluc-
tuations. It should be noted that the assumption of isotropic fluctuations
(Equation [3.8]) is intrinsic to the GNM. Thus the 3N-dimensional prob-
lem (Equation [3.4]) can be reduced to an N-dimensional one described by
Equation (3.15).

3.2.4 Influence of Local Packing Density

The diagonal elements of the Kirchhoff matrix, �ii, are equal to the residue
coordination numbers, zi (1 ≤ i ≤ N), which represent the degree of the
EN nodes in graph theory. Thus zi is a direct measure of local packing density
around the ith residue. To better understand this, it is possible to express � as
a sum of two matrices �1 and �2, consisting exclusively of the diagonal and
off-diagonal elements of �, respectively. Using these two matrices, �−1 may

1Note that solving Equation (3.13) involves the ratio of the multidimensional Gaussian counter-
parts for the two integrals

∫
exp{−ax2}dx = 1

2
√
(π/a) and

∫
x2 exp{−ax2}dx = (√π/4)a3/2 in the

range (0,∞) such that 〈x2〉 = (
√
π/4)a−3/2/ 12

√
(π/a) = 1/2a. For the simplest case of a single

spring, subject to harmonic potential 12γ x
2, a = γ /2kBT, and 〈x2〉 = kBT/γ .
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be written as

�−1 = [�1 + �2]−1 = [�1(E+ �−11 �2)]−1 = (E+ �−11 �2)
−1�−11

= (E− �−11 �2 + · · · )�−11 = �−11 − �−11 �2�
−1
1 + · · · (3.16)

if one assumes that the invariants of the product (�−11 �2) are small compared
to those of the identity matrix, E, which is a valid approximation for protein
Kirchhoff matrices. Thus, the information concerning local packing dens-
ity and distribution of contacts is dominated by the diagonal matrix, �−11 ,
which is the leading term in a series expansion for �−1 in Equation (3.16).
Consequently, application of Equation (3.15) indicates that 〈(�Ri)

2〉 scales
with [�−11 ]ii = 1/zi, to a first approximation. Thus the local packing density
as described by the coordination numbers is an important structural prop-
erty contributing to the ms fluctuations of residues [41]. However, these
coordination numbers represent only the leading order and not the entire
set of dynamics described by Equation (3.15).

3.3 Method and Applications

3.3.1 Equilibrium Fluctuations

The ms fluctuations of residues are experimentally measurable (e.g., x-ray
crystallographicB-factors, or rootmean-square [rms] differences betweendif-
ferent models fromNMR), and as such, have often been used as an initial test
for verifying and improving computational models and methods. Beginning
with the originalGNMpaper [3], several applications havedemonstrated that
the fluctuations predicted by the GNM are in good agreement with experi-
mental B-factors [6, 23, 39, 42–44]. The B-factors are related to the expected
residue fluctuations and calculated according to

Bi = 8π2

3
〈(�Ri)

2〉 = 8π2kBT
γ
[�−1]ii (3.17)

Figure 3.2(a) illustrates the agreement between the B-factors predicted by
the GNM (solid curve) and those calculated from experimental data (open
circles) for an example protein, ribonuclease T1 (RNase T1), where� has been
constructed from the Cα coordinates for RNase T1 deposited in the Protein
Data Base (PDB) [45]. Panel B compares the rms fluctuations predicted by the
GNMand those observed across the 20NMRmodels deposited in the PDB for
reduced disulphide-bond formation facilitator (DsbA) [46]. The correlation
coefficientbetweenGNMresults andexperimentaldata for these twoexample
proteins are 0.769 and 0.823 in the respective panels A and B. An extensive
comparisonof experimental and theoreticalGNMB-factors for a series of PDB
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FIGURE 3.2
Comparison ofms fluctuations predicted byGNMandANMwith experimental observations. (a)
Experimental x-ray crystallographic B-factors (open circles) reported for ribonuclease T1 (PDB
file 1bu4 [53]) plotted with calculated values from GNM (solid line) and ANM (dotted line)
against residue number. (b) Root mean square deviation between Cα coordinates of NMRmodel
structures (open circles) deposited for the reduced disulphide-bond formation facilitator (DsbA)
in the PDB file 1a24 [46].

structures by Phillips and coworkers has shown that GNM calculations yield
an average correlation coefficient of about 0.65 with experimental B-factors
provided that the contacts between neighboringmolecules in the crystal form
are taken into account. The agreement with NMR data is also remarkable,
pointing to the consistency between the fluctuations undergone in solution
and those inferred from x-ray structures.

3.3.2 GNM Mode Decomposition: Physical Meaning of Slow and
Fast Modes

A major utility of the GNM is the ease of obtaining the collective modes
of motion accessible to structures in native state conditions. The GNM nor-
mal modes are found by transforming the Kirchhoff matrix into a product of
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three matrices, the matrix U of the eigenvectors ui of �, the diagonal matrix
� of eigenvalues λi, and the transpose UT = U−1 of the unitary matrix U as
in Equation (3.18).

� = U�UT (3.18)

The eigenvalues are representative of the frequencies of the individual modes,
while the eigenvectors define the shapes of themodes. The first eigenvalue, λ1,
is identically zero with the corresponding eigenvector comprised of elements
all equal to a constant, 1/

√
N, indicative of an absence of internal motions

in this zeromode. The vanishing frequency reflects the fact that the molecule
can be translated rigidly without any potential energy change.
Combining Equations (3.15) and (3.18), the cross-correlations between

residue fluctuations can be written as a sum over the N − 1 nonzero modes
(2 ≤ k ≤ N) using

〈�Ri ·�Rj〉 = 3kBT
γ
[�−1]ij = 3kBT

γ
[U�−1UT]ij

= 3kBT
γ

∑
k

[λ−1k uku
T
k ]ij (3.19)

This permits us to identify the correlation, [�R ·�R]k contributed by the
kth mode as

[�Ri ·�Rj]k = 3kBT
γ

λ−1k [uk]i[uk]j (3.20)

where [uk]i is the ith element of uk . Because uk is normalized, the plot of
[uk]2i against the residue index, i, yields the normalized distribution of ms
fluctuations of residues in the kth mode, shortly referred to as the kth mode
shape (Figure 3.3[a]). Because the residue fluctuations are related to the experi-
mental temperature (B-factors) by Equation (3.17), these elements of uk reflect
the residue mobilities in the kth mode.
Note that the factor λ−1k plays the role of a statistical weight, which suit-

ably rescales the contribution of mode k. This ensures that the slowest mode
has the largest contribution. In addition to their significant contribution,
the slowest motions are in general also those having the highest degree of
collectivity. Many studies have shown that the shapes of the slowest modes
indeed reveal the mechanisms of cooperative or global motions, and the most
constrained residues (minima) in these modes play a critical role, such as
a hinge-bending center, that govern the correlated movements of entire
domains [10–13, 17, 19, 44, 47–52]. It is important to note that although these
motions are slow, they involve substantial conformational changes distrib-
uted over several residues. The fastest modes, on the other hand, involve
the most tightly packed and hence most severely constrained residues in
the molecule. Their high frequency does not imply a definitive conform-
ational change, because they cannot effectively relax within their severely
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FIGURE 3.3
(See color insert following page 136) Physical meaning of slow and fast modes in GNM. (a) Dis-
tribution of squared displacements of residues in the slowestmode as a function of residue index
for ribonuclease T1 (RNase T1). The red arrows identify local minima that correspond to five
experimentally identified catalytic residues: Tyr38, His40, Glu58, Arg77, and His92. (b) Distri-
bution of squared displacements averaged over the ten fastest modes for the same protein. Here
the arrows indicate the residues shown by hydrogen/deuterium exchange to be themost protec-
ted and thus important for reliable folding. A majority of these critical folding residues appear
as peaks in the fast modes. (c) Color-coded mapping of the slowest mode (a) onto the 3D Cα

trace of RNase T1 (PDB file: 1bu4 [53]) where red is most mobile and blue least mobile. The side
chains of the five catalytic residues are shown in pink surrounding the nucleotide binding cavity.
(d) A similar color-coded mapping of the fluctuations of the ten fastest modes (b) onto the Cα

trace. Here the side chains of the tenmost protected residues fromhydrogen deuterium exchange
experiments are drawn explicitly showing that most of them are calculated to be mobile (red).
The images in c and d were generated using VMD [74].

constrained environment. On the contrary, they enjoy extremely small con-
formational freedom, on a local scale, by undergoing fast, but small amplitude
fluctuations.
Figure 3.3 illustrates the contrast between the degree of collectivity for

the slowest and fastest modes for an example protein, RNase T1. As in this
case, the slow modes involve almost the entire molecule as indicated by the
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broad, delocalized peaks in panel A. The relative potential motion predicted
by this mode is plotted onto the 3D structure in Figure 3.3(c), color-coded
such that minima are blue andmaxima are red. For RNaseT1, five red arrows
are drawn in Figure 3.3(a) to indicate the residues identified as part of the
catalytic site (Y38, H40, E58, R77, and H92) [53]. With the exception of H92,
these five residues are located near minima in the slow (global) mode shape
(Figure 3.3[a]) and their side chains are shown to be spatial neighbors (pink
tubes) in the 3D plot of this protein (Figure 3.3[c]).
In contrast, the fastest modes are highly localized, with mode shapes that

usually involve only a few peaks, as in Figure 3.3(b). These peaks refer to the
residues that have a high concentration of local energy and are tightly con-
strained inmotion. It has been noticed that these residues are often conserved
across species and may form the folding nuclei [33, 34, 54]. In the applica-
tion to RNase T1, the ten most protected residues (57,59,61,77–81,85, and 87),
as identified by hydrogen–deuterium exchange experiments [55], are indic-
ated by gold arrows in Figure 3.3(b) and shown with their side chains in the
3D structure, color-coded such that minima are blue and maxima are red
(Figure 3.3[d]). As illustrated, many of these residues involve interactions
between different strands of the central β-sheet, suggesting their potential
involvement in the folding of RNase T1.

3.3.3 What Is ANM? How Does GNM Differ from ANM?

As pointed out in Chapter 1 by Hinsen, ANM analysis is simply an NMA
applied to an EN model, the potential of which is defined as [6]

VANM = γ

2

[ N∑
i,j

(Rij − R0ij)
2H(rc − Rij)

]
(3.21)

where H(rc − Rij) is the heavyside step function equal to 1 if the argument
is positive, and zero otherwise. H(rc − Rij) selects all residue pairs within
the cutoff separation of rc. In the GNM, on the other hand, the potential is
given by

VGNM = γ

2

[ N∑
i,j

(Rij − R0
ij
)2H(rc − Rij)

]
(3.22)

Equation (3.22) looks very similar to Equation (3.21), with the major differ-
ence that the vectors Rij and R0

ij in Equation (3.22) replace distances (scalars),
Rij and R0ij. This means that the potential, which depended upon the dot
product between the fluctuation vectors in the GNM

(Rij − R0
ij) · (Rij − R0

ij) = R2ij + (R0ij)2 − 2RijR0ij cos(Rij,R0
ij)

= R2ij + (R0ij)2 − 2(XijX0
ij + YijY0

ij + ZijZ0ij) (3.23)
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now (in the ANM) depends upon their scalar product

(Rij − R0ij)(Rij − R0ij) = R2ij + (R0ij)2 − 2RijR0ij

= R2ij + (R0ij)2 − 2[X2
ij + Y2

ij + Z2ij]1/2

× [(X0
ij)
2 + (Y0

ij)
2 + (Z0ij)2]1/2 (3.24)

Because the scalarsRij andR0ij dependupon their components in anonquad-
ratic form, it is natural to endupwith anisotropic fluctuations upon taking the
second derivatives of the potential with respect to the displacements along
the X-, Y-, and Z-axes as is done in NMA. Using Equations (3.23) and (3.24),
the difference between these two potentials is

VGNM − VANM = γ

 N∑

i,j

RijR0ij(1− cos(Rij,R0
ij))H(rc − Rij)


 (3.25)

that is, the two potentials are equal only if cos(Rij, R0
ij) = 1, that is, Rij = R0

ij
or �Ri = �Rj.
Physically, this means that in addition to changes in inter-residue distances

(springs), any change in the direction of the inter-residue vector R0
ij is also

being resisted or penalized in the GNM potential. On the contrary, the ANM
potential depends exclusively on themagnitudes of the inter-residue distances
and does not penalize any such changes in orientation. It is conceivable that
within the densely packed environment of proteins, orientational deforma-
tions may be as important as translational (distance) ones, and a potential
that takes account of the energy dependence associated with the internal
orientational changes (i.e., VGNM) is physically more meaningful than one
exclusively based on distances (VANM). Not surprisingly, ANM has been
observed to give rise to excessively high fluctuations compared to the GNM
results or experimental data (Figure 3.2), and hence necessitated the adop-
tion of a higher cutoff distance for interactions [6]. With a higher cutoff
distance, each residue is connected to more neighbors in a more constrained
and consolidated network.
InasmuchasVGNM isphysicallymore realistic, onemightprefer toadopt the

GNM, rather than theANM for a coarse-grainedNMA.However, this greater
realism comes at a price. Because the GNMdescribes the dynamics within an
N-dimensional configurational space as opposed to a 3N-dimensional one
of ANM, the residue fluctuations predicted by the GNM are intrinsically
isotropic. Thus GNM cannot provide information regarding the individual
components: �X(k), �Y(k), and �Z(k), of the deformation vectors �R(k)

associated with each mode, k, but rather predicts the magnitudes, |�R(k)|,
induced by such deformations. The conclusion is that GNM is more accurate,
and should be chosen when evaluating the deformation magnitudes, or the
distribution of motions of individual residues. However, ANM is the only



BICH: “c472x_c003” — 2005/10/19 — 20:45 — page 55 — #15

The Gaussian Network Model 55

possible (less realistic) model when it comes to assessing the directions or
mechanisms of motions. That the fluctuations predicted by the GNM correl-
ate better with experimental B-factors than those predicted by the ANM has
been observed and confirmed in a recent systematic study of Phillips and
coworkers [23]. The dotted curves in Figure 3.2 illustrate the ANM results,
and provide a comparison of the level of agreement (with experimental data)
usually achieved by the two respective models. The correlation coefficients
between the GNM results and experimental data are 0.769 and 0.823 in the
panels A and B, respectively, whereas their ANM counterparts are 0.639 and
0.261. We note that the two sets of computed results are themselves correlated
(0.756 and 0.454, respectively), which can be expected from the similarity of
the underlying models.

3.3.4 Applicability to Supramolecular Structures

A major advantage of the GNM is its applicability to large complexes and
assemblies. The size of the Kirchhoff matrix is N × N for a structure of N
residues, as opposed to the size 3N × 3N of the equivalent Hessian matrix
for a residue-level EN NMA (or ANM). The resulting computational time
requirement forGNManalysis is thenabout 33 times less than forANM,which
in turn is about 83 times less than for NMA at atomic scale (assuming eight
atoms on the average per residue). This enormous decrease in computational
time permits us to useANM, and certainly GNM, for efficiently exploring the
dynamics of supramolecular structures [17, 22].
Due to limitations in computational memory and speed, efforts to analyze

large structures of ∼105 residues rely upon further coarse-graining of the
structure of interest. This is now the standard approach, having been imple-
mented in several forms by various research groups including hierarchical
coarse-graining (HCG) [56], discussed below; rotations–translations of blocks
(RTB) [57] or block normal mode (BNM) [9]; and substructure-synthesis
method (SSM) [58], which are discussed in other chapters of this book.
For both GNM and ANM, it has been demonstrated that an HCG scheme

where clusters of residues and their interactions, as opposed to individual
pairs of residues, are considered as the EN nodes successfully reproduce
the essential features of the full-residue GNM/ANM calculations [56]. The
global dynamics of hemagglutinin A were obtained at least two orders of
magnitude faster than standard GNM/ANM by coarse-graining to the level
of every 40th residue (N/40) [56]. Notably, theminima in globalmode shapes,
which identify key regions coordinating the collective dynamics, were exactly
reproduced by the N/40 coarse-graining.
Figure 3.4 illustrates the application of GNM to the wild type 70S ribosome

from Escherichia coli [59]. The calculations were performed by considering a
single node for each amino acid (on the Cα atom) and each nucleotide (on the
P atom), yielding a total of 10,453 nodes (residues and nucleotides). Because
the diameter of theA-formRNAdouble helix is 20Å, a larger cutoff distance is
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FIGURE 3.4
(See color insert following page 136) Application of GNM to the 70S ribosome structure. The
calculations were performed on the wild type 70S ribosome from E. coli (PDB files 1pnx and
1pny [59]). (a) The slowest nonzero mode for the 70S ribosome colored from −1 (red) to +1
(blue) is mapped onto the 3D structure indicating a dramatic break at the interface between the
two subunits (50S and 30S). This image was generated using VMD [74]. (b) The slowest nonzero
mode plotted vs. the residue number. Residues in the 50S subunit (blue) exhibit one direction of
motion that is opposed to the motion in the 30S subunit (red).

required to correctly identify base-paired nucleotides solely by their P-atom
positions [42]. To ensure adequate connectivity, two cutoff distances were
adopted, 9.0 Å if both atoms were Cα and 21.0 Å if one or both were phos-
phorous, analogous to our ANM analysis of ribosome [19]. Panels a and b
illustrate the slowest (nonzero) mode shape as a color-coded 3D structure
and against the residue index. The coloring emphasizes the distinct differ-
ence between the motions of the 50S (red) and 30S (blue) subunits in this
mode and indicates an anticorrelated motion of one subunit with respect to
the other. This type of anticorrelated motion (i.e., ratcheting of one subunit
with respect to the other) has been observed by cryo-EM [60].
Recently the dynamics of the HK97 bacteriophage viral capsid has been

analyzed using the GNM. Two different forms of the capsid known as the
pro-capsid (Prohead II) [2] and mature (Head II) [61] were considered. These
structures are comprised of 420 copies of a single protein chain arranged
into 12 pentamers and 60 hexamers, which expand from a spherical form
(prohead) to icosahedral form (head) during maturation [62]. The GNM res-
ults obtained with a coarse-graining of N/35 for the first (slowest nonzero)
mode of the two forms are shown in Figure 3.5(a) and Figure 3.5(b). These
HCG structures have 3072 and 3360 nodes respectively. GNM computations
were also performed with the complete sets of 107,520 and 117,600 residues
for the respective pro-capsid and mature capsid to examine the conforma-
tional changes accompanyingmaturation [22]. Figure 3.5(c) and Figure 3.5(d)
indicate that the slowest nonzero mode for the full capsid matches the
N/35 results. This mode is asymmetric, yet identifies a region at each pole,
pentamer-centered, as the most mobile (red) in each of these calculations.
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(a) (b)
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FIGURE 3.5
(See color insert following page 136) Application of GNM to the HK97 bacteriophage viral
capsid. (a) The ms fluctuations from the slowest (threefold degenerate) mode for the prohead
viral capsid coarse-grained by retaining only every 35th residue are colored from most mobile
(red) to least mobile (blue). (b) The results for the slowest (threefold degenerate) mode of the
head viral capsid calculated using a similar coarse-grained procedure of retaining every 35th
residue. Both identify pentamer-centered regions at opposite poles as the most mobile regions
suggesting an expansion or puckering of these residues. (c) The ms fluctuations for the slowest
mode calculated over the entire (107,520 residue) prohead capsid structure (PDBfile 1if0 [62]) and
(d) entire (117,600 residue) head capsid structure (PDB file 1fh6 [61]) also demonstrate this high
degree of mobility at the poles. (e) The weighted summation of the 11 slowest modes identifies
the 12 pentamers as themost mobile regions responsible for expansion from the prohead to head
form. (f) The slowest nondegenerate, symmetric mode, mode 31, also identifies these pentamers
as highly mobile. These images were generated using VMD [74].
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Due to the large degree of symmetry of the capsid, many of the calculated
modes are degenerate, that is, have the same frequencies (eigenvalues). For
example, the mode indicated in Figures 3.5(a) to Figure 3.5(d) is threefold
degenerate, oriented along a different axis of the capsid. Hence a superposi-
tion of these three modes would more accurately describe the global motion
of expansion that accompanies maturation. In fact, the superposition of the
11 slowest modes was found to yield icosahedrally symmetric fluctuations
and identify the 12 pentamers as the most mobile (red) regions in the capsid
(Figure 3.5[e]). Cryo-EM maps of intermediates between the prohead and
headconformations indicate a largedegreeofmotion for thesepentamersdur-
ing expansion [63]. It should be noted that the slowest nondegenerate mode,
mode 31, is icosahedrally symmetric and also identifies these 12 pentamers
as the most mobile regions (Figure 3.5[f]). However, because the frequency
of mode 31 is at least three times that of modes 1 through 11, its contribution
to the observed structural changes is small relative to that of these slower,
asymmetric modes which cooperatively induce a similar set of fluctuation
dynamics [22].

3.3.5 iGNM: A Database of GNM Results

With advances in computational methods for characterizing proteins, and
with the recognition of the importance of modeling and understanding struc-
tural dynamics, a number of groups have recently undertaken the task of
generating and making available on the Internet servers or databases for
modeling or examining protein motions. One of the earliest attempts in this
direction is the Database (DB) of Macromolecular Movements (MolMovDB;
http://molmovdb.org/) [64] originally known as the DB of Protein Motions,
constructed by Gerstein and collaborators [65]. Currently, about 4400 movies
(“morphs”) are available in the MolMovDB, generated by interpolating
between pairs of known conformations of proteins or RNAmolecules. These
“morphs” are then used to classify molecules into roughly 178 motion types.
Another online calculation tool based on a simplified NMA combined with
the rotations–translations of blocks (RTB) algorithm [57] has been developed
by Sanejouand’s group with a sophisticated webserver interface (elNémo;
http://igs-server.cnrs-mrs.fr/elnemo/), which includes up to 100 slowest
modes for each studied structure [66]. A similar, yet more extensive work
has been conducted in the lab of Wako [67] where the normal modes in the
spaceofdihedral angleshavebeengeneratedandcollected in theProModeDB
(http://cube.socs.waseda.ac.jp/pages/jsp/index.jsp), for nearly 1442 single
chain proteins extracted from the PDB. ProMode has been restricted to
relatively small proteins (<300 residues) due to the time cost of energyminim-
ization performed prior to NMA. In the same spirit, we have generated a DB
of GNM results, iGNM (http://ignm.ccbb.pitt.edu/) [68]. Two major advant-
ages of this DB are (i)motions are predicted, rather than interpolated between
two structures, implying that knowledge of a single structure is sufficient to
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generate the equilibrium fluctuations and (ii) the completeness of structure-
dynamics data generated, since almost all of the existing PDB structures
(22,549 PDB files as of September 15, 2003) have been analyzed. One should
note thatweare still in theprocessof cleaningandrefining the resultantoutput
files as well as augmenting the iGNM DB with newly deposited structures.
The iGNM DB provides information on protein dynamics beyond those

experimentally provided by B-factors (for x-ray structures) or rms fluctu-
ations (NMR structures). We have developed an Internet-based query system
to retrieve information on B-factors, GNM mode shapes (eigenvectors cor-
responding to both the slowest and fastest ends of the vibrational spectrum),
ribbon diagrams color-coded according to the residue mobilities, and cross-
correlation maps describing the strength and types of correlations between
residue fluctuations. The retrieved data are presented using a Chime plug-in
(for 3D visualization of molecular structures) and Java applets (for graph-
ical two-dimensional [2D] plots of fluctuation distributions). In addition to
retrieving the data stored in the DB, the user has the ability to compute GNM
dynamics for newly deposited structures as well as user-generated structures
(e.g., from comparative modeling) through an automated online calcula-
tion server. The raw data for modes, frequencies, and residue correlations
can be downloaded from the iGNM DB. Figure 3.6 illustrates the different
types of outputs accessible from the iGNM DB, for phospholipase A2, as an
example. For visualization, the residue mobility in the 20 slowest and fastest
modes for each protein is mapped onto a ribbon diagram of the 3D structure
(Figure 3.6[a]) color-coded from blue (least mobile) to red (most mobile). For
slowmodes, theblueportionof themolecule indicates the leastmobile regions
(minima), which are usually relevant to biological function (see Section 3.3.2).
Similarly, by selecting the fast modes from the menu, the users are able to
view the residues predicted to be critical for folding (maxima) colored red.
Figure 3.6(b) illustrates a 2D plot of this same information against residue
number for a given mode. Using the Java-applet windows (Figure 3.6[b]
insets) the user is able to identify residues of interest, and scale the curves in
order to compare multiple modes or different proteins. Figure 3.6(c) demon-
strates the case where theoretical (red) and experimental (yellow) B-factors
are plotted against the residue index simultaneously. The correlation map
between themotions of residue pairs is illustrated in Figure 3.6(d). The colors
on the map reflect the correlation cosines between the fluctuations of residue
pairs — dark blue for anticorrelated (coupled but opposite direction), red for
correlated (coupled, same direction), and green for uncorrelated motions.

3.4 Future Prospects

As discussed earlier, EN models in general have proven effective in charac-
terizing large-scale motions in biomolecules. The simplicity of these models
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(a) (b)

(c) (d)

FIGURE 3.6
(See color insert following page 136) Visualization of dynamics data stored in the iGNM DB.
The results shown are of the example phospholipaseA2 (PDB:1bk9 [75]). (a) The slowestmotions
(slow1) are color-coded and mapped on structure of 1bk9 in dark blue, green, orange to red in
the increasing order of mobility. (b) The window shows the mobility of the slowest mode with
scalable range of view, max/min value info window and pop-up tag that shows the residue
number and coordinates. (c) The experimental and predicted B factors are compared. (d) The
cross-correlation of residue pairs of all modes. The perfect concertedmotion (+1) is colored dark
red while the perfect anticorrelated motion (−1) is colored dark blue.

sacrifice atomic-level predictions, in favor of performing efficient calculations
of large structures, which capture the essential dynamics and functional
motions encoded in the native structure. Such models are necessary to infer
dynamics and function in an age where structural information about larger
and larger complexes outpaces the computational ability to apply traditional
atomic-level simulations.
There are at least five major areas in which GNM, or ENmodels in general,

are anticipated tobeuseful. These include (i) theapplications to lowresolution
structural data (e.g., cryo-EM), both for structure refinement and dynamics
assessment [69–71]; (ii) exploring themachinery of supramolecular structures
or multi-molecular assemblies including protein–DNA, protein–protein, and
membrane protein–lipid complexes [19]; (iii) high throughput examination
of the collective dynamics of families of proteins toward extracting common
dynamic patterns and design principles selected and conserved across gen-
omes or within subfamilies for functional requirements; (iv) investigation
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of unfolding pathways and kinetics by including a temperature depend-
ence for contacts [31, 36, 72]; and (v) integration with more detailed models
and simulations [32, 73] (e.g., MD) for efficiently exploring the physical and
chemical transitions between different functional forms further discussed in
the chapter by Liu and coworkers.
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