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ABSTRACT

Elastic network models (ENMs) and, in particular, the Gaussian Network Model (GNM)
have been widely used in recent years to gain insights into the machinery of proteins. The
extension of ENMs to supramolecular assemblies presents computational challenges, because
of the difficulty in retaining atomic details in mode decomposition of large protein dynamics.
Here, we present a novel approach to address this problem. We rely on the premise that,
all the residues of the protein machinery (network) must communicate with each other and
operate in a coordinated manner to perform their function successfully. To gain insight
into the mechanism of information transfer between residues, we study a Markov model
of network communication. Using the Markov chain perspective, we map the full-atom
network representation into a hierarchy of ENMs of decreasing resolution, perform analysis
of dominant communication (or dynamic) patterns in reduced space(s) and reconstruct
the detailed models with minimal loss of information. The communication properties at
different levels of the hierarchy are intrinsically defined by the network topology. This new
representation has several features, including: soft clustering of the protein structure into
stochastically coherent regions thus providing a useful assessment of elements serving as
hubs and/or transmitters in propagating information/interaction; automatic computation of
the contact matrices for ENMs at each level of the hierarchy to facilitate computation of both
Gaussian and anisotropic fluctuation dynamics. We illustrate the utility of the hierarchical
decomposition in providing an insightful description of the supramolecular machinery by
applying the methodology to the chaperonin GroEL-GroES.
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1. INTRODUCTION

WITH ADVANCES IN SEQUENCE and structure genomics, an emerging view is that to understand and
control the mechanisms of biomolecular function, knowledge of sequence and structure is insuffi-
cient. Additional knowledge in the form of dynamics is needed. In fact, proteins do not function as static
entities or in isolation; they are engaged in functional motions, and interactions, both within and between
molecules. The resulting motions can range from single amino acid side chain reorientations (local) to
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concerted domain-domain motions (global). The motions on a local scale can be explored to a good ap-
proximation by conventional molecular dynamics (MD) simulations, but the motions at a global scale are
usually beyond the range of such simulations. Elastic network models (ENM), based on polymer mechan-
ics, succeed in providing access to global motions (Bahar and Rader, 2005; Rader et al., 2005; Ma, 2005).

A prime example of an EN is the Gaussian Network Model (GNM) (Bahar et al., 1997; Haliloglu et al.,
1997). In graph-theoretic terms, each protein is modeled by an undirected graph G, given by G = (V, &),
with residues V = {v; | i =1, ..., n} defining the nodes of the network, and edges £ = {e;; } representing
interactions between residues v; and v;. The set of all pairwise interactions is described by a non-negative,
symmetric affinity matrix A = {a;;}, with elements a;; = a;;. GNM chooses a simple interaction model,
which is to set the affinity a;; = a;; = 1, for a pair of residues v; and v; whose C* atoms are within
a cut-off distance of r.. The interactions represent both bonded and non-bonded contacts in the native
configuration of the protein. The cutoff distance represents the radius of the first coordination shell around
residues observed in Protein Data Bank (PDB) (Berman et al., 2000) structures and is set to be 7 A (Bahar
and Jernigan, 1997; Miyazawa and Jernigan, 1985).

The motions accessible under native state conditions are obtained from the Kirchhoff matrix I', defined in
terms of the affinity and degree matrices as I' = D—A. Here D is a diagonal matrix: D = diag(dy, ..., dn)
and d; represents the degree of a vertex v;: d; = Y i _jai; = Y i_,aji. T is referred to as the
combinatorial Laplacian in graph theory (Chung, 1997). The Kirchhoff matrix multiplied by a force
constant y that is uniform over all springs defines the stiffness matrix of an equivalent mass-spring system.
The eigenvalue decomposition of I' yields the shape and frequency dispersion of equilibrium fluctuations.
In most applications, it is of interest to extract the contribution of the most cooperative modes, i.e., the
low frequency modes that have been shown in several systems to be involved in functional mechanisms
(Bahar and Rader, 2005; Ma, 2005). Also, of interest is the inverse of I', which specifies the covariance
matrix for the Boltzmann distribution over equilibrium fluctuations.

GNM is a linear model, and as such it cannot describe the transition between configurations separated
by an energy barrier (or any other non-linear effect), so it only applies to fluctuations in the neighborhood
of a single energy minimum. The energy well is approximated by a harmonic potential, which limits the
magnitude of the predicted motion. The topology of inter-residue contacts in the equilibrium structure
is captured by the Kirchhoff matrix I'. Also, there is no information on the ‘directions’ of motions in
different vibrational modes, but on their sizes only. The fluctuations are assumed to be isotropic and
Gaussian, but for anisotropic extension of GNM called ANM see (Atilgan et al., 2001; Doruker et al.,
2000) or equivalent EN-based normal mode analyses (NMA) (Hinsen, 1998; Tama and Sanejouand, 2001).
Despite this simplicity, many studies now demonstrate the utility of GNM and other EN models in deducing
the machinery and conformational dynamics of large structures and assemblies (Bahar and Rader, 2005).

The application and extension of residue-based ENMs to more complex processes, or larger systems, is
computationally expensive, both in terms of memory and time, as the eigen decomposition scales on the
order of O(n®), where n is the number of nodes in the graph. Given that the Kirchhoff matrix is sparse,
there are a plethora of efficient sparse eigensolvers that one can use (Barnard and Simon, 1994; Fowlkes
et al., 2004; Lehoucq et al., 1996; Simon and Zhou, 2000), including eigensolvers designed specifically
for decomposing graph Laplacians (Koren et al., 2003).

Another way to reduce complexity is to adopt coarser-grained models. For example, in the hierarchical
coarse-graining (HCG) approach, sequences of m consecutive amino acids are condensed into unified
nodes, which reduces the computing time and memory by factors of m3 and m?2, respectively (Doruker
et al., 2002); or a mixed coarse-graining has been proposed in which the substructures of interest are
modeled at single-residue-per-node level and the surrounding structural units at a lower resolution of
m-residues-per node (Kurkcuoglu et al., 2004); another common representation of the structure is to adopt
rigidly translating and rotating blocks (RTB) (Marques, 1995; Tama et al., 2000), or the so-called block
normal mode analysis (BNM) (Li and Cui, 2002).

While these methods have been useful in tackling larger systems, the choice and implementation of
optimal model parameters to retain physically significant interactions at the residue-, or even atomic level,
has been a challenge. The level of HCG has been arbitrarily chosen in the former group of studies, requiring
ad-hoc readjustments to spring constants or cutoff distances of interaction. In the case of RTB or BNM
approaches, all atomic, or residue level information is lost, and substructures that may contain internal
degrees of freedom—some of which being functional—are assumed to move as a rigid block. Overall,
information is lost on local interactions as structures are coarse-grained. Clearly, the challenge is to map
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a high resolution model to a low resolution, with a minimal loss of information. In this paper, we present
a novel approach to address this problem.

Our approach is to model structures as networks of interacting residues and study the Markov propa-
gation of “information” across the network. We rely on the premise that, the components (residues) of a
protein machinery (network) communicate with each other and operate in a coordinated manner to perform
their function successfully. Using the Markov chain perspective, we map the full atom network representa-
tion into a hierarchy of intermediate ENMs, while retaining the Markovian stochastic characteristics, i.e.,
transition probabilities and stationary distribution, of the original network. The communication properties at
different levels of the hierarchy are intrinsically defined by the network topology. This new representation
has several features, including: soft clustering of the protein structure into stochastically coherent regions
thus providing a useful assessment of elements serving as hubs and/or transmitters in propagating infor-
mation/interaction; automatic computation of the contact matrices for ENMs at each level of the hierarchy
to facilitate computation of both Gaussian and anisotropic fluctuation dynamics; and a fast eigensolver
for NMA. We illustrate the utility of the hierarchical decomposition by presenting its application to the
bacterial chaperonin GroEL-GroES.

2. A MORKOV MODEL FOR NETWORK COMMUNICATION

We model each protein as a weighted, undirected graph G given by G = (V, £), with residues V = {v; |
i =1,...,n} defining the nodes of the network, and edges £ = {e;;} representing interactions between
residues v; and v;. The set of all pairwise interactions is described by a non-negative, symmetric affinity
matrix A = {a;;}, with elements a;; = a;; and where a;; is defined as

g — i (1)
ij NN,

Here Nj; is the is the total number of atom—atom contacts made within a cutoff distance of r. = 4 A
between residues v; and v; and (N;, N;) are the total number of heavy atoms in the individual residues
(vi, vj). The self-contact a;; is similarly defined. This representation captures to a first approximation
the strong (weak) interactions expected to take place between residue pairs with large (small) numbers
of atom-atom contacts, and removes biases due to size effects. The degree of a vertex v; is defined as
dj = Z?=1 ajj = Z?=1 a i, which are organized in a diagonal matrix of the form D = diag(d, ..., dn).

A discrete-time, discrete-state Markov process of network communication is defined by setting the com-
munication (or signalling) probability m;; from residue v; to residue v; in one time-step to be proportional
to the affinity between nodes, a;,;. In matrix notation, this conditional probability matrix M = {m;;}, also
called the Markov transition matrix, given by

M =AD", )

defines the stochastics of a random walk on the protein graph G. Note, m;; = d /._laij where d; gives a mea-
sure of local packing density near residue v; and serves as a normalizing factor to ensure Y ;_, m;; = 1.
Alternatively, m;; can be viewed as the conditional probability of interacting with residue v;, that is trans-
mitting information to residue v;, given that the signal (or perturbation) is initially positioned, or originates
from, v;. Suppose this initial probability is p(}. Then, the probability of reaching residue v; using link ¢;;
is m;; p(}. In matrix notation, the probability of ending up on any of the residues v = [vy, v, ..., v,] after
one time step is given by the distribution p! = M p°, where p* = [plf, R p,]f] Clearly this process can
be iterated, so that after B steps we have

pP=MPp°. 3)

Assume the graph is connected, i.e. there is a path connecting every pair of residues in the graph. Then,
as § — oo the Markov chain p# approaches a unique stationary distribution m, the elements of which are
given by: m; = d;i/Y jr_, dr. While the evolution of the random walk is a function of the starting
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FIG. 1. Hierarchical network decomposition overview. Step (i) map the structure (a) to its optimal reduced level
representation (illustrated here for retinol-binding protein mapped from full atomic scale to intermediate-chain rep-
resentation). This step may involve several intermediate levels of resolution (b) (Fig. 2); step (ii) perform structural
analysis (e.g. GNM) at a coarse-grained scale (c¢); and step (iii) reconstruct the detailed structure-dynamics (d). The
communication/coupling of residues at a given level are assumed to obey a Markov process controlled by atom-atom
contact topology. The steps (i) and (iii) are achieved by two operators, R for model reduction, and K for model recon-
struction. R and K ensure that similar stochastic characteristics (transition probabilities and stationary distributions)
are retained between successive levels of the hierarchy.

distribution, the stationary distribution is invariant to the precise details of how the random walk is
initiated.

The main goal in undertaking random walks is to reveal the communication patterns inherent to the
network because of its architecture. However, a naive random walk on a large protein, as will be presented
below for the GroEL-GroES complex, is computationally challenging. We address this problem by building
a hierarchy of intermediate resolution network models, performing the analysis in the reduced space and
mapping the results back to the high resolution representation as illustrated in Figure 1.

3. NETWORK HIERARCHY TO REDUCE COMMUNICATION COMPLEXITY

The objective in designing a network hierarchy is to map the Markov process operating at the highest
resolution onto successively lower resolution network models, while maintaining its stochastic character-
istics (Chennubhotla and Jepson, 2005). In particular, using the stationary distribution & and the Markov
transition matrix M, we build a coarse-scale Markov propagation matrix M (size: m x m, where m < n)
and its stationary distribution §. The random walk initiated on the coarse-scale network a(m), and reaching
distribution §, is equivalent to the random walk on the full resolution network G(n) with stationary distri-
bution . To build a hierarchy of intermediate resolution networks we devise two sets of new operators at
each level of the hierarchy: R for model reduction, and K for model expansion/reconstruction.

3.1. Deriving stationary distribution in the reduced model

We begin by expressing the stationary distribution &= = [m1, 72, ..., 7,] as a probabilistic mixture of
latent distributions,

m =K§, “

where § = [§1,82,...,8n,] is an unknown stationary distribution in a reduced (m-dimensional) representa-
tion of the structure; K = {Kj;;} is an n x m non-negative kernel matrix with elements K;; and columns
K being latent probability distributions that each sum to 1, and m < n. The kernel matrix acts as an
expansion operator, mapping the low-dimensional distribution & to a high-dimensional distribution 7.

We derive a maximum likelihood approximation for § using an expectation-maximization (EM) type
algorithm (McLachlan and Basford, 1988). To this aim we minimize the Kullback-Liebler distance measure
(Kullback, 1959; Kullback and Leibler, 1951) between the two probability distributions = and K §, subject
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to the constraint that ZT=1 d; =1 and ensured by the Lagrange multiplier A in the equation below:

i=1

E:_ZﬂianKijgj"'k Z(S‘/’—l . (®)]
Jj=1 Jj=1

Setting the derivative of E with respect to §; to be zero we obtain

" wiKi8;
o =8 (6)

m

=N Kikdi
k

=1

The contribution made by kernel j to a node i (or its stationary probability ;) is given by K;; (or the
product K;;§;), and hence we can define an ownership of node i in the high resolution representation by
a node j in the low resolution representation as

R” _ 2

= — _
> Kikbi
k=1

R;; is also referred to as the responsibility of node j in the low resolution representation, for node i
in the high resolution. We note that the mapping between the two resolutions is not deterministic, but
probabilistic in the sense that ZT=1 R;; = 1.

Using this relation, and the equalities ZT=1 §j =1land >/ ; m; = 1, summing over j in Equation (6)
gives A = 1. This further leads to the stationary distribution § at the coarse scale

(N

8; =Y mRi. ®)

i=1

The matrix R therefore maps the high dimensional distribution z to its low-dimensional counterpart § and
hence the name reduction operator. Following Bayes theorem, K;; can be related to the updated 8 values
as

K =~ )

In summary, the operators K and R and stationary distribution § are computed using the following EM
type procedure: (1) select an initial estimate for K and § (see Section 3.2); (2) E-step: compute ownership
maps R using Equation (7); (3) M-step: estimate § and update K using Equations (8) and (9) respectively;
and finally, (4) repeat E- and M- steps until convergence.

3.2. Kernel selection details

As an initial estimate for §, a uniform distribution is adopted. The kernel matrix K is conveniently
constructed by diffusing M to a small number of iterations § to give M B and selecting a small number
of columns. In picking the columns of M B a greedy decision is made. In particular, column i in M B
corresponds to information diffusion from residue v;. The first kernel K; that is picked corresponds to
the residue v; with the highest stationary probability ;. Following the selection of K;, all other residues
J (and the corresponding columns K; in M B ) that fall within the half-height of the peak value of the
probability distribution in K; are eliminated from further consideration. This approach generates kernels
that are spatially disjoint. The selection of kernels continues until every residue in the protein is within a
half-height of the peak value of at least one kernel. While other kernel selection procedures are conceivable,
we chose the greedy method for computational speed. In practice, we observed the EM algorithm generates
results of biological interest that are insensitive to the initial estimates of K and §.
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3.3. Transition and affinity matrices in the reduced model

The Markov chain propagation at the reduced representation obeys the equation g¥*+1 = qu , where g%
is the coarse scale m-dimensional probability distribution after k steps of the random walk. We expand qk
into the fine scale using p* = Kq*, and reduce p* back to the coarse scale by using the ownership value

R;; asin qjk +1 = > pik R; ;. Substituting Equation (7) for ownerships, followed by the expression

for p¥, in the equation for ¢ /.k +1 we obtain
M = diag(8) K" diag (K§)™' K. (10)

Using the definition of M, and the corresponding stationary distribution §, we generate a symmetric affinity
matrix A that describes the node-node interaction strength in the low resolution network

A = Mdiag(¥). (11)

To summarize, we use the stationary distribution = and Markov transition matrix M at the fine-scale to
derive the operator K and associated reduced stationary distribution §, using the EM algorithm described
in the previous section. K and § are then used in Equations (10) and (11) to derive the respective transition
M and affinity A matrices in the coarse-grained representation. Clearly, this procedure can be repeated
recursively to build a hierarchy of lower resolution network models.

4. HIERARCHICAL DECOMPOSITION OF THE CHAPERONIN GroEL-GroES

We examine the structure and dynamics of the bacterial chaperonin complex GroEL-GroES-(ADP);
(Xu et al., 1997), from the perspective of a Markov propagation of information/interactions. GroEL is a
cylindrical structure, 150 A long and 140 A wide, consisting of 14 identical chains organized in two back-
to-back stacked rings (cis and trans) of seven subunits each. The GroES co-chaperonin, also heptameric,
binds to the apical domain of GroEL and closes off one end of the cylinder. During the allosteric cycle
that mediates protein folding, the cis and trans rings alternate between open (upon binding of ATP and
GroES) and closed (unliganded) forms, providing access to, or release from, the central cylindrical cavity,
where the folding of an encapsulated (partially folded or misfolded) protein/peptide is assisted.

First, the inter-residue affinity matrix A based on all atom-atom contacts is constructed (Fig. 2a),
from which the fine-scale Markov transition matrix M is derived using Equation (2). The kernel selection
algorithm applied to M B (B = 4) yields 1316 (reduced level 1) kernels. Using these kernels as an initializa-
tion, a recursive application of the EM procedure derives stationary distributions § (Equation (8)), updated
expansion matrices K (Equation (9)), reduced level probability transition matrices M (Equation (10))
and the corresponding residue interaction matrices A (Equation (11)). The respective dimensions of A

2
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FIG. 2. Affinity matrix hierarchy for the protein GroEL/GroES (PDB: 1AON). The respective sizes of the reduced
models, and the associated affinity matrices, across the hierarchy are n = 8015 (fine-scale, a) and m = 1316 (coarse-
scale 1, b), 483 (coarse-scale 2), 133 (coarse-scale 3), 35 (coarse-scale 4, ¢) and 21 (coarse-scale 5, d). The affinity
matrices are real-valued but are shown here as dot plots (a,b), to highlight the similarity in the matrix structure across
the hierarchy. The affinity matrices for the two lowest resolution models (¢,d) are shown as images, where the affinity
value is inversely proportional to the brightness of a pixel.
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FIG. 3. Four different soft clusters located on GroEL.

turn out to be 483 (reduced level 2), 133 (reduced level 3), 35 (reduced level 4, Fig. 2¢) and 21 (re-
duced level 5, Fig. 2d). We note that the individual subunits of the GroEL/GroES are distinguished by
their strong intra-subunit interactions, and a number of inter-subunit contacts are maintained at all levels,
which presumably establish the communication across the protein at all levels. The dimension m of the
reduced model is automatically defined during the kernel selection at each level of the hierarchy. The
method thus avoids the arbitrary choices of sampling density and interaction cutoff distances at different
hierarchical levels.

In contrast to the deterministic assignment of one-node-per-residue in the original ENM, the Markov-
chain-based representation adopts a stochastic description in the sense that each node probabilistically
“owns,” or “is responsible for” a subset of residues. To see this, consider the ownership matrix RGIHD —

{ngj’l+1)} that relates information between two adjacent levels [ and / + 1 of the hierarchy. Likewise,
the matrix R(®D) = ]_[lL=_01 REHD engures the passage from the original high resolution representation

0 to the top level L of the hierarchy. In particular, the ijth element RSLL) describes the probabilistic
participation of residue v; (at level 0) in the cluster j (at level L), and ) j RSLL) = 1. Hence, the nodes
at level L perform a soft partitioning of the structure. This type of soft distribution of residues among the
m nodes, or their partial/probabilistic participation in neighboring clusters, establishes the communication
between the clusters, and is one of the key outcomes of the present analysis. Of interest is to examine the
ownership of clusters at a reduced representation. We select the coarse-scale 4, for example, which maps
the structure into a graph of 35 clusters (Fig. 2¢). Figure 3 demonstrates the ownership of the individual
clusters at this level. Essentially there are five sets of seven clusters each, centered near the apical and
equatorial domains of the cis and trans rings, and at the individual GroES chains. The intermediate domains
are being shared between the clusters at the apical and equatorial domains. As such, they play a key role
in establishing intra-subunit communication. The color-coded ribbon diagrams in Figure 3 display the
loci of representative clusters from each of these four distinct types (excluding the GroES clusters). The
color code from red-to-blue refers to the higher-to-lower involvement (or responsibility) of the individual
residues in the indicated clusters. Evidently, the regions colored red serve as hubs for broadcasting the
information within clusters, and those colored blue play the key role of establishing the communication, or
transferring information between clusters. Detailed examination of the ownership of these clusters reveal
several interesting features, correlating with the experiments and summarized in Section 6.

Next, we benchmark the utility and robustness of the presently introduced methodology in so far as the
equilibrium dynamics of the examined structure is concerned. Mainly, we compare the collective modes
of motion predicted for the GroEL-GroES complex using a full-residue (8015 nodes) ENM (Keskin et al.,
2002), with those captured by the hierarchy of reduced models. The newly introduced representation
hierarchy will be shown below to successfully map structure-dynamics information between successive
levels with minimal loss in accuracy.!

IThe ownership matrix can also be used to propagate the location information of the residues from one level of the
hierarchy to another. This in turns help perform anisotropic fluctuation modeling, a procedure that we plan to elaborate
in future study.
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5. HIERARCHICAL GAUSSIAN NETWORK MODEL

Here we present a methodology for generating GNM modes at different levels of coarse-graining the
information on contact topology inherent in G, and reconstructing the detailed mode behavior by projecting
the eigenvectors and eigenvalues generated at low levels of resolution back to their fine scale counterparts
using the Markov chain propagation formalism, a method shortly referred to as hierarchical GNM (hGNM).

For hGNM, assume that the dimensions of the Kirchhoff matrices at the coarse, intermediate and fine
scales are e, m, and n, respectively, where e < m < n. The affinity and Kirchhoff matrices at the coarsest
level are not likely to be sparse, however a full eigen decomposition of the coarsest Kirchhoff matrix (size:
e x e) will be computationally the least expensive step.

To reconstruct the elgen information at the fine-scale, assume we have access to the leadmg eigenvectors
U (size: m x e) for r (31ze m x m). Using this we generate the leading eigenvectors U (size: n x e), and
the leading eigenvalues A= [A1, A2 -+ 4] (size: e x 1) of the fine-scale Kirchhoff matrix I' (size: n X n).
Let {U, A} denote the eigenvectors and eigenvalues obtained from a direct decomposition of I'. There are
several steps to the eigen reconstruction process. (i) The coarse-scale eigenvectors U can be transformed
using the kernel matrix K as U=KU to generate U as an approximation to U'. (ii) This transformation
alone is unlikely to set the directions of U exactly aligned with U. So, we update the directions in U by
repeated application of the following iteration (called power iterations (Watkins, 2002)): U<T g U Note,
here instead of using I' we use an adjusted matrix I'g given by I'g = vI —T', where v is a constant and 1
is an identity matrix. The power iterations will direct the eigenvectors to directions with large eigenvalues.
But for fluctuation dynamics, we are interested in the slow eigen modes with small eigenvalues, hence the
adjustment I ¢ is made. In particular, because of Gerschgorin disk theorem (Watkins, 2002) the eigenvalues
of ' are bound to lie in a disk centered around the origin with a radius v that is no more than twice the
largest element on the diagonal of I'. (iii) Steps i and ii need not preserve orthogonality of the eigenvectors
in U. We fix this by a Gram-Schmidt orthogonalization procedure (Watkins, 2002). Finally, the eigenvalues

are obtained from A = diag(fljT r 5). In Chennubhotla and Jepson (2005), we present more details of
this coarse to fine eigen mapping procedure, including a discussion on the number of power iterations to
use; setting the thresholds for convergence and a comparison of the speed ups obtained over a standard
sparse eigensolver for large matrices.

5.1. Collective dynamics in the reduced space: benchmarking against GNM

As discussed earlier, the eigenvalue decomposition of I' yields the shape and frequency dispersion of
equilibrium fluctuations. The shape of mode k refers to the normalized distribution of residue displacements
along the principal axis k, given by the elements ul(k) (1 < i < n) of the kth eigenvector u®, and the
associated eigenvalue Ay scales with the frequency of the kth mode. In most applications, it is of interest
to extract the contribution of the most cooperative modes, i.e., the low frequency modes that have been
shown in several systems to be involved in functional mechanisms. To this end, we used the Markov-chain
based hierarchy to build reduced Kirchhoff matrices I' at increasingly lower levels of resolution. We then
performed their mode decompositions and propagated the information back over successive levels of the
hierarchy, so as to generate the eigenvectors and eigenvalues for the fine-scale Kirchhoff matrix I'. We
now show that AGNM maps the structure-dynamics information between successive levels of the hierarchy
with minimal loss in accuracy.

First, our previous study identified ten slowest modes of interest, including the counter-rotation of
the two rings around the cylindrical axis (non-zero mode 1) and other collective deformations proposed
to be involved in chaperonin function (Keskin et al., 2002). Results presented in Figure 4 show the
mechanism of the dominant mode, mainly a global twisting of the structure where the cis and trans
undergo counter rotation about the cylindrical axis (mode 1). The most important point is that these results
corroborate previous findings (Keskin et al., 2002; Ma, 2005) and are reproduced here by adopting a
reduced representation down to m = 21 nodes and mapped back to full-residue level.

Second, Figure Sa compares the frequencies obtained by the full-residue-level representation, with those
obtained by ZGNM, upon propagation of the topology information from reduced level 4 (Fig. 2¢). An
excellent agreement is observed between the reconstructed eigenvalues A (red curve) and their original
values A (open circles). In Figure 5b, we display the correlation cosine between the eigenvectors #®) and
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a. Shape of the dominant mode w; over elements i
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- Lo i - -

vy

b. Displacement Polarity

FIG. 4. Dominant mode shape and mobility. (a) The labels on the abscissa indicate the chain identities, A-G belong
to the cis ring, H-N come from the trans ring and O-U are from the GroES cap. The black curve gives the shape of
the slowest eigen mode. The ordinate value is the normalized distribution of residue displacements along the dominant
mode coordinate. (b) Ribbon diagram illustrating the polarity of the displacement, color coded to be red for positive
and blue for negative, indicating the anticorrelated motions of the two halves of the complex. (¢) Ribbon diagram
color-coded after residue mobilities in mode 1. The mobility of residue v; given by the squared displacement: (ulgl))2,
with a color code that is red for high and blue for low.
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FIG. 5. (a) h\GNM results comparing eigenvalues A (circles) from a direct decomposition of the I' with multi-scale
eigensolver spectrum x (red line). For the direct eigen decomposition, we use the Matlab program svds.m which
invokes the compiled ARPACKC routine (Lehoucq et al., 1996), with a default convergence tolerance of 1e-10.
(b) Mode shape correlation: diag(| ﬁTU |), between the matrix of eigenvectors U derived by hGNM and U from direct
decomposition. (¢) Correlation coefficient between the theoretical B-factors (derived at each level of the hierarchy)
versus experiment. The abscissa labels indicate the size m of the network at successive levels of the hierarchy.
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u®) obtained by the full-residue representation and the reconstruction from reduced level 4 respectively.
Notably, the reduced representation contains only 35 nodes. Yet, the correlation cosine with the detailed
representation containing 8015 nodes is almost unity throughout all the leading 25 modes, and above 0.8
for all modes, except the terminal four modes. The contribution of the latter to the overall dynamics is
negligibly small compared to the large group of slow modes.

Finally, in order to assess the effect of coarse-graining on fluctuation dynamics, we compared in Figure 5c
the mean-square fluctuations obtained from different levels of the hierarchy with the experimental B-factor
values. The theoretical B-factor for each residue v; is computed using (Kundu et al., 2002)

2 n
B, — ksl St (u§k>)2, (12)
4 k=2

where the summation is performed over all » — 1 modes in the GNM, or over all the m — 1 reduced
eigenvectors and eigenvalues reconstructed from different levels of the hierarchy in A”GNM. Because ex-
perimental B-factors correspond to each atom and our representation at the fine-scale is a summary of
atom-atom contact information for each residue, we average the experimental B-factors over all atoms
for each residue. As shown in Figure 5c, a correlation coefficient value of 0.86 is achieved between the
experimental and theoretical B-factors after mapping the structure of 8015 residues into a representative
network of 21 nodes. Thus, the fluctuation behavior of individual residues is accurately maintained despite
a drastic reduction in the complexity of the examined network. Interestingly, a maximum in correlation co-
efficient is obtained at an intermediate level of resolution, m = 133, which may be attributed to an optimal
elimination of noise in line with the level of accuracy of experimental data at this level of representation.

6. DISCUSSION

A new method is introduced in the present study, which permits us to use structural information at
atomic level in building network representations of different complexity, which lend themselves to efficient
analysis of collective dynamics and information propagation stochastics. The approach is particularly useful
for analyzing large structures and assemblies, or cooperative/allosteric processes that are usually beyond
the range of conventional molecular simulations.

We illustrated the utility of the methodology by way of application to the chaperonin GroEL-GroES, a
widely studied structure composed of n = 8015 residues. Notably, we start with the full-atomic represen-
tation of the complex, which involves a total of ~10® atom-atom contacts (based on an interaction range
of 4 A). Interatomic contacts define the affinities of pairs of residues, which are, in turn, used to define the
weights of the connectors between residues (nodes) in the graph/network representation of the structure.
The affinities also define the conditional probabilities of information transfer across residues following a
Markovian process. The original network of n nodes is mapped into lower dimensional representations,
down to m = 21 nodes, by an EM algorithm that maintains two basic properties of the original stochastic
process: its Markovian conditional probabilities and stationary distribution (i.e. communication probabil-
ity/potential) of individual residues. Two sets of operators, ensuring model reduction and reconstruction
at different hierarchical levels permit us to perform the analysis at reduced scales but reconstructing the
behavior.

A major utility of the present study is to identify the nodes (clusters of residues) that control the
dynamics of the structure-reduced levels. First, these are soft nodes: they do not necessarily contain/own
well-defined residues, but exhibit a probabilistic ownership, i.e. some residues exhibit a high responsibility
in these clusters, while others contribute only partially, being shared by neighboring clusters. The identity
of residues lying in the two groups is crucially important for assessing the residues that can serve as hubs
and messengers of information, respectively. Careful examination of the ownership of clusters at level 4
(Fig. 3) revealed for example several interesting features such as (Chennubhotla and Bahar, 2006): (i) the
incorporation of the GroES mobile loop residues Glul8-Ala33 into the adjoining clusters centered at the
apical domains of cis ring subunits, thus providing evidence for the critical role of this loop in establishing
the communication between the chaperone and co-chaperonin, consistent with several experimental studies
(Hohfeld and Hartl, 1994; Kovalenko et al., 1994; Landry et al., 1993; Richardson and Georgopoulos, 1999;
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Richardson et al., 1999, 2001; Shewmaker et al., 2001), (ii) the identity of amino acids that play a key
role in establishing the intra-ring, inter-subunit (positive) cooperativity in the cis ring, mainly Val38-Ile49
on the equatorial domains, and Aspl179-Leul83 and Val381-Lys392 on the intermediate domains of the
subunits, (iii) the stronger inter-subunit coupling between the apical domain residues of the subunits in the
trans ring, compared to the cis ring, and in particular the involvement of the previously pointed out (Braig
et al., 1994; Ma et al., 2000) inter-subunit salt bridge Glu386-Arg197 in this stabilizing effect evidenced by
the participation of these residues in the same cluster, (iv) the tendency of the cis and trans ring subunits to
incorporate into their clusters, their clockwise and counter-clockwise neighbors, respectively, when viewed
from the cap. The last property is particularly interesting in view of the known negative cooperativity
between the two rings (Yifrach and Horovitz, 1995) and the tendency of the two rings to rotate in opposite
directions (Fig. 4) in the most cooperative GNM mode, a feature that is also suggested by comparing the
structures of the complex at different states of the chaperonin cycle (Saibil and Ranson, 2002).

The correlations observed between the present results and those from the previous experimental studies,
as well as more detailed computations, show promise in the utility of the present methodology as a tool for
exploring both the collective dynamics and the communication stochastics of complex structures, including
those derived from cryo-EM.
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