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INTRODUCTION

The preference or local propensity of individual amino acids for

specific secondary structure elements has been known for decades.1,2

Early secondary structure prediction algorithms based on these pref-

erences achieved prediction accuracies in the 60–65% range.3,4 As

more sequences were deposited in the Protein Data Bank (PDB),5 it

was possible to demonstrate that selected n-grams (contiguous runs

of n amino acids) correlated better with secondary structure than

their amino acid components.6,7 A second generation of secondary

structure prediction algorithms was developed that used the statistical

properties of n-grams in windows of fixed length to train machine

learning algorithms such as neural nets (NN), hidden Markov models

(HMM), and Support Vector Machines (SVM). Accuracy levels in the

70% range were achieved with these approaches.8 Early studies also

showed that information derived from multiple alignment studies

(MSAs) had a significant correlation with secondary structure.9

Recently, evolutionary information derived from MSAs has been

combined with local propensity information to achieve accuracies

approaching the 80% range.10–12 The currently available state-of-

the-art services in the public domain include YASPIN,13 PHDpsi,14

SSPro2,15 PSIPRED,16 SAM-T99,17 and SAM-T04.18 Additional

approaches include efforts to combine different prediction servers

into meta-servers,19 efforts to relate short sequence segments to sec-

ondary structures and motifs in the PDB,20–22 and efforts to relate

secondary structures to other features such as kinetics of protein

folding.23

N-gram patterns provide another useful means for classifying and

characterizing proteins. An n-gram pattern (NP{n,m}) in a protein

sequence is a set of n residues and m wildcards in a window of size

nþm. Each window of nþm residues in a sequence is associated with

a collection of NP{n,m} patterns based on the combinatorics of nþm

objects taken m at a time. Any protein sequence can be parsed into a

series of overlapping n-gram patterns by advancing a window of size

nþm along the sequence. NP{n,m} patterns that are shared between
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all the chains in the Protein Data Bank (PDB).
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of these distributions was developed, which accu-

rately predicted 71–76% of a-helical segments

and 62–67% of b-sheets in rigorous jackknife

tests. This provided evidence for the strong corre-

lation between NP{4,2} patterns and secondary
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with increasing levels of sequence identity, it was

also possible to separate the evolutionary and

local propensity contributions to the classifica-
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sequences reflect evolutionary relationships. Recently the

authors developed an alignment-independent protein

classification algorithm based on shared NP{4,2} patterns

that compared favorably to PSI-BLAST.24 Theoretically,

NP{4,2} patterns should also reflect secondary structure

propensity since they contain all possible n-grams for

1 � n � 4 and a window of 6 residues is wide enough

to capture periodicities in the 2 � n � 5 range.25 Since

NP{4,2} patterns may derive from both evolutionary

constraints and local energy-driven propensities, it is of

interest to quantifying the contribution from either

effect. NP{4,2} patterns also have other interesting char-

acteristics including: (1) the existence of all theoretically

possible NP{4,2} patterns in nature; (2) the low proba-

bility of finding redundant NP{4,2} patterns in the same

sequence; (3) the high probability of family membership

if two nonoverlapping NP{4,2} patterns are shared

between sequences; and (4) an implied substitution ma-

trix for matches between sequences based on the variable

position of the wildcards in NP{4,2} patterns.24 NP{4,2}

patterns capturing evolutionary as well as local propen-

sity information might be useful as additional inputs to

machine learning algorithms for predicting secondary

structure if a strong correlation between these patterns

and secondary structure could be established.

In the present study, we quantify the statistical rela-

tionship between NP{4,2} patterns and secondary struc-

ture. We analyze the distribution of NP{4,2} patterns and

introduce a new algorithm based on their distribution

for correlating these patterns with secondary structure.

The methodology applied to a representative set of PDB

structures reveals a strong correlation that is based on a

combination of evolutionary and local propensity infor-

mation, the former effect being more pronounced in the

case of b-strands.

METHODS

Database selection and secondary
structure determination

The studies reported in this paper were based on the

3D structures extracted from the Protein Data Bank

(PDB) (http://www.rcsb.org).5 A total of 32,434 files

were downloaded on 05-Sep-2005. A total of 58,831

chains were selected from these files after applying the

following criteria: (1) crystallographic data only; (2)

chain length between 75 and 1500 residues; (3) no nucle-

otide chains; and (4) no chains with more than 10 miss-

ing side chains. The secondary structure was determined

for each selected chain using the STRIDE program.26

Secondary structure assignment by STRIDE is based on

hydrogen bond formation patterns derived from the dis-

tances and angles between hydrogen bond forming pairs.

This is similar to the approach employed in the popular

DSSP program.27 In STRIDE, additional constraints

related to backbone dihedral angles also contribute to the

determination. A recent comparison of DSSP with

STRIDE showed no significant differences in prediction

with respect to the principal secondary structure compo-

nents.28 The structural categories generated by STRIDE

include the 310-helix (G), the a-helix (H), the p-helix
(I), extended b-strands (E), isolated b-bridges (B),

hydrogen-bonded turns (T), and nonhydrogen bonded

turns (S). For the analysis in this paper, these seven states

were consolidated to A (helix) ¼ {G, H, I}, B (sheet) ¼
{B, E}, and C (coil) ¼ {T, S}.

Clustering of chains based on
sequence identity level

Studies involving the statistical properties of sequences

contained in the PDB must take into account the skewed

distribution of the sequences in this database. Membrane

proteins are underrepresented because they are difficult

to crystallize and they are not soluble in water.29 Site

mutagenesis studies have resulted in large clusters of near

identities for selected target proteins.30 Finally, the atten-

tion of the scientific community has often been focused

on small subsets of proteins with known roles in physiol-

ogy or disease.31 To quantify database skew, the 58,831

chains in the PDB database were assigned to 100 identity

cutoff (IC) levels based on the maximum allowable simi-

larity between sequences at the same level (i.e. IC90

would contain no sequences with similarity greater than

90%). Similarity was determined by measuring the per-

centage of unique 4-grams in a query sequence that were

also present in a target sequence of equal or greater

length. For this purpose, a 4-gram was defined as any

instance of 4 consecutive residues in a sequence. Unique

4-grams represent the collection of all possible 4-grams

in a sequence after purging for redundancy. The specific

algorithm involved the following steps: (1) sort the

58,831 chains in the PDB into ascending order based on

chain length; (2) select query sequences starting at the

top of the list and moving toward the bottom; (3) for

each query sequence determine the percentage of unique

4-grams contained in each sequence below its level; (4)

populate a histogram whose bins are levels of identity

from 0.00 to 0.99; and (5) store the chains in separate

databases based on 100 IC levels. The histogram of the

IC levels is shown in Figure 1(a). The sharp drop seen

below the IC10 level is related to exclusion of the 4-gram

patterns that occur in sequence pairs by random chance.

The steep rise beyond the IC95 level is related to overre-

presentation and the near-identities stemming from site

mutagenesis studies.

The features in the histogram are accentuated when

the relative entropy of the 4-gram distributions is meas-

ured over this interval. Relative entropy is defined

as SðPkQÞ ¼ P

i

logðpi=qiÞ, where pi is the probability of
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the ith member in distribution P and qi is the probability

of the ith member in distribution Q32. Family members are

characterized by different 4-gram distributions.24 If fam-

ily members were added evenly over the identity range

from IC10 to IC100, the relative entropy would show a

gradual rise reflecting the relative distribution of family

sizes. It can be seen from Figure 1(b) that there is a

Figure 1
(a) The histogram of 58,831 PDB chains as a function of IC level. The sharp

drop below the IC10 identity is related to exclusion of the 4-gram patterns that

occur in pairs of sequences by random chance. The steep rise beyond IC95 is

related to the overrepresentation of certain proteins and the near identities

stemming from site mutagenesis studies. The gradual rise between IC10 and

IC95 represents the smooth accumulation of homologous protein family

members. (b) The relative entropy of the 4-gram distribution as a function of

identity cutoff. There is little effect from skewing between IC10 and IC55. The

break at �IC55 appears to be related to overrepresentation of members of

immunoglobulin fold. After IC95 database distortion from overrepresentation is

marked.

Figure 3
Histogram of NP{4,2} patterns for a typical 90–10 training set from the IC95

level. There are a small number of patterns toward index 0 that are

overrepresented. The majority of patterns, however, have a relatively flat

distribution over the range of the index.

Figure 4
Creation of classification tables from training sets. A window of width 6 is

advanced one residue at a time from left to right. At each position the 10

patterns associated with that window are generated. The average secondary

structure content for each type (A–C) is recorded for each pattern. These

percentages are averaged over all sequences in the training set. The data triplet

in the final array represents the Z-value for each structure type (A–C) with

respect to its NP{4,2} pattern.

Figure 2
An example of extracting NP{4,2} patterns. At each position (e.g., H), there are

10 NP{4,2} patterns.
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break at �IC55 and another break at IC95. Direct

inspection of the family membership at IC55 showed

that this break was strongly associated with overrepresen-

tation of the 4-grams associated with immunoglobulin

folds. The break at IC95 picked up the overrepresentation

from selected study targets and site mutagenesis studies.

The curves in Figure 1 suggest that studies carried out

between IC10 and IC55 would not be affected by skewed

distribution and that studies carried out below the IC95

level would have only modest effects.

Distribution of N-gram patterns

The set of 58,831 chains from the PDB were divided

into eight subsets consisting of IC ¼ 10, 25, 50, 75, 90,

95, 99, and 100. Sample size in these levels ranged from

6600 chains in IC10 to 58,831 chains in IC100. A total of

160 training and test sets were generated from these eight

IC levels. Half of the sets reflected a 90–10% split

between training and test sets. The remainder reflected a

50–50% split. At each IC level and split, training and test

set membership were determined from a random number

generator.

n-Gram patterns (NP{n,m}) are sets of n residues and

m wildcards in windows of size nþm. In this study

NP{4,2} patterns were chosen for study based on optimi-

zation studies conducted in pervious research.24 The

constraint was also added that NP{4,2} patterns must

start with a residue. Figure 2 shows an example of

NP{4,2} patterns containing 4 residues and 2 wildcards

in a 6 residue window. For each residue position, there

are 10 patterns based on combinatorics. There are 1.6

million (204 3 10) theoretically possible patterns consid-

ering all combinations of 20 amino acids at occupied

sites. The number of patterns actually observed over the

160 training sets ranged from a high of 1.52 million to a

low of 1.48 million. Therefore, in all training sets, most

of the theoretically possible patterns were observed. A

typical training set histogram (the distribution of partic-

ular NP{4,2} patterns) from the IC95 level is shown in

Figure 3. The patterns have been sorted in descending

order by count. It can be seen that the majority of

NP{4,2} patterns have a smooth distribution over a

broad index range. The overrepresentation on the left

side of the graph affects less than 3% of the NP{4,2}

patterns.

Construction of secondary structure
classification tables

Secondary structures were grouped into three classes

(A, B, and C) as outlined above. The relationship

between NP{4,2} patterns and secondary structure was

determined for each of the 160 training sets using the

following steps: (1) pass a window of size 6 over each

chain advancing it one residue at a time until the last

position that will accommodate the full window is

reached; (2) generate the 10 possible NP{4,2} patterns at

each position (the combinatorics of 4 residues taken 2 at

a time when the first position is always occupied by a

residue); (3) for each NP{4,2} pattern add up the num-

ber of A’s, B’s and C’s in the 6 positions in the window

expressing the result as a percentage of each secondary

structure type; (4) when all chains have been processed,

determine the mean and standard deviation for each cat-

egory and express the result as a Z score using the for-

mula Z ¼ (Xi – X)/S where Xi is the observed value, X is

the mean, and S is the standard deviation; (5) for each

of the 160 training sets create a hashtable with NP{4,2}

patterns as keys and arrays containing the Z scores for A,

B, and C as values. Figure 4 depicts the process for creat-

ing classification tables for the 160 training sets.

Jackknife testing algorithm

The Z-scores for the A, B, and C levels in the hash-

tables generated for each of the 160 training sets were

used to predict the secondary structure in the corre-

sponding test sets. The members of the training and test

sets were mutually exclusive. Because the training and

test sets spanned IC levels from 10 to 100, the effects of

database skew, secondary structure propensity and evolu-

tionary content on accuracy were also measured. The fol-

lowing steps were employed in jackknife testing: (1) slide

a window of size 6 over each test sequence; (2) look up

each NP{4,2} pattern in the corresponding classification

table and retrieve the Z values for its A, B, and C com-

ponents; (3) average all 10 patterns; (4) average over all

six positions as the window advances down the sequence

(adjust appropriately for end effects); (5) for each com-

pleted sequence assign the secondary structure type associ-

ated with the greatest positive Z-value; (6) record the

actual secondary structure type determined by STRIDE;

and (7) determine the accuracy as the percentage of correct

predictions for each sequence. Figure 5 depicts the jack-

knife protocol for obtaining the Z-values used in

prediction.

For each jackknife run, the secondary structure predic-

tion, the true secondary structure, the most positive Z-

value and the difference between this Z-value and its

nearest neighbor (DZ) were recorded for each position.

This information was used to analyze the prediction ac-

curacy separately for a, b, and coil regions and to gener-

ate confidence levels for each predicted position.

RESULTS

Prediction accuracy

The secondary structure prediction profiles for two

example chains are illustrated in Figure 6. The first case

was drawn from the IC50 level with a 50–50% training/
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test set split. The second case was drawn from the IC95

level with a 90–10% training/test set split. Figure 6(a)

shows the profile for an aspartate receptor, which is an

example of an all-alpha structure (PDB code 1lih, CATH

code 1.20.120.30). The y-axis represents the average Z-

values for a, b, and coil from the corresponding training

set. The two color bars show the actual (experimental)

secondary structure and the predicted (theoretical) sec-

ondary structure, respectively. It can be seen that the

largest Z score is significantly higher than its nearest

neighbor at most positions. For this sequence, the sec-

ondary structure prediction accuracy was 83%. Figure

6(b) shows the profile for carbonic anhydrase, an exam-

ple of an aþb structure (PDB code 1ca2, CATH code

3.10.200.10). For this sequence, the secondary structure

prediction accuracy was 84%. The ribbon diagrams of

the two proteins color-coded according to the actual

secondary structure (left) and the predicted secondary

structure (right) are illustrated in Figure 7 for the two

examples.

Jackknife test results

Table I shows the jackknife test results for the com-

plete set of eight IC levels (rows) and the 10 different

random seeds (columns), for the training/test set split of

90–10%. Table II shows the same results for a training/

test set split of 50–50%. Training and test sequences are

mutually exclusive in all cases. Inspection of Table I

reveals that the classification accuracy does not vary sig-

nificantly over the different random seeds. The average

classification accuracy (listed in the last column) rises

from a low of 61% to a high of 75% as the IC level rises

from IC10 to IC100. The results in Table II show no sig-

nificant differences compared to the results in Table I. All

subsequence analysis will therefore be confined to results

obtained with a 90–10% split.

The improvement in the accuracy of prediction in Ta-

ble I with advancement from the IC10 level to IC100

level is partly due to the incorporation of evolutionary

information from related family members. There is also

an artifact related to skewing of the database from over-

representation of selected proteins. Accuracy as a func-

tion of IC level is shown by the red curve in Figure 8(a)

which attempts to separate these factors. It can be seen

that accuracy rises gradually in a linear fashion (approxi-

mated by the blue dotted line) from IC10 to IC90. Above

the IC95 level there is a sharp break. Comparing the

results in this plot with the plots in Figure 1(a,b) sug-

gests that significant skewing of the results does not

come into play until the IC95 level is exceeded.

Figure 5
Jackknife testing protocol. A window of size 6 is advanced one residue at a time

from left to right. For each pattern, the Z-values associated with the secondary

structure (A–C) components are looked up in the classification table. The values

for all 10 patterns are then averaged over all six positions associated with each

window (after correcting for end effects). Secondary structure assignment is

based on the secondary structure component with the largest positive Z-value.

Figure 6
(a) Secondary structure Z-score profiles for the aspartate receptor 1lih. At most

positions, the difference between the largest Z-score and its nearest neighbor is

significant. Predictions based on the largest Z-score in this case were 83%

accurate. (b) Secondary structure Z-score profiles for carbonic anhydrase (1ca2).

Predictions based on the most positive Z-score in this case were 84% accurate.

J.K. Vries et al.
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Figure 7
Ribbon diagrams of two protein chains color-coded according to the actual secondary structure (left) and the predicted secondary structure (right), where the red color

represents the A component, the green color represents the B component, and the blue color represents the C component. (a) Aspartate receptor (1lih). (b) Carbonic

anhydrase (1ca2).

Table I
Jackknife Results as a Function of Identity Level for a 90–10 Training/Test Split

Seed

IC% 3 5 7 11 13 17 19 23 29 31 Ave

10 0.606 0.605 0.609 0.610 0.611 0.609 0.615 0.612 0.607 0.611 0.609
25 0.613 0.612 0.615 0.611 0.618 0.616 0.614 0.619 0.622 0.610 0.615
50 0.623 0.620 0.621 0.617 0.621 0.622 0.623 0.621 0.621 0.617 0.621
75 0.624 0.628 0.627 0.629 0.630 0.632 0.629 0.633 0.628 0.631 0.629
90 0.639 0.640 0.641 0.646 0.644 0.638 0.639 0.641 0.641 0.645 0.641
95 0.654 0.656 0.660 0.656 0.649 0.656 0.653 0.660 0.658 0.659 0.656
99 0.707 0.706 0.707 0.707 0.704 0.706 0.705 0.704 0.703 0.706 0.705
100 0.745 0.746 0.745 0.745 0.745 0.745 0.746 0.744 0.747 0.746 0.745
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Prediction accuracy as function
of secondary structure type

The separate breakdown of prediction accuracy for a-,
b-, and coil-regions as a function of IC level is shown in

Figure 8(b). This figure demonstrates that the results for

Table II
Jackknife Results as a Function of Identity Level for a 50–50 Training/Test Split

Seed

IC% 3 5 7 11 13 17 19 23 29 31 Ave

10 0.604 0.603 0.603 0.603 0.602 0.605 0.604 0.604 0.604 0.603 0.604
25 0.610 0.609 0.610 0.609 0.608 0.610 0.610 0.610 0.612 0.609 0.610
50 0.617 0.615 0.615 0.615 0.616 0.616 0.617 0.614 0.616 0.613 0.615
75 0.622 0.623 0.624 0.625 0.623 0.623 0.626 0.625 0.624 0.625 0.624
90 0.635 0.635 0.633 0.636 0.634 0.636 0.634 0.635 0.637 0.635 0.635
95 0.649 0.651 0.650 0.649 0.651 0.651 0.650 0.650 0.650 0.649 0.650
99 0.701 0.699 0.700 0.700 0.702 0.701 0.701 0.700 0.702 0.701 0.701
100 0.744 0.743 0.743 0.743 0.743 0.743 0.744 0.743 0.744 0.744 0.743

Figure 8
(a) Average accuracy of secondary structure prediction as a function of IC level if

the examined set of structures (red curve). A slow gradual rise exists between IC10

and IC90. Above IC95 a sharp rise occurs, as indicated by the departure from the

best fitting line (blue, dashed). This suggests that significant database skewing does

not enter the picture until the IC90-IC95 level. (b) Prediction accuracy as a

function of structure type. Alpha helix prediction is much better than beta sheet or

coil prediction. Beta sheet prediction is more strongly influenced by inclusion of

additional protein family members that alpha helix or coil prediction.

Figure 9
(a) Z difference distribution and associated prediction accuracy. This relation

can be used to construct a lookup table to supply percentages of correctness for

individual positions in sequences. (b) Percentage of correctness versus prediction

accuracy using the structure of Tnf receptor associated factor 2 (Traf2, PDB ID

1ca4).
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a-helices are significantly better than those for b-sheets
or coils. The accuracy for a-helix prediction at IC10 is

71%. This rises to 76% at IC95. At an IC level of 10,

most related family members have been purged from the

database. The prediction power of the NP{4,2} patterns

at this level is based predominantly on local propensity.

The gradual increase in accuracy as the IC level rises

reflects the evolutionary information gleaned from adding

homologous family members to the mix. The final rise

probably reflects skewing of the database. The accuracy

profile for b-sheets shows significantly more improvement

with rising IC levels than a-helices or coils. This suggests
that evolutionary information is more important for b-
sheet stabilization than for the other secondary structure

types. The difference between the accuracy rates for a-hel-
ices and b-sheets at the IC10 level suggests that local

propensities are more important for a-helix accuracy,

consistent with the hydrogen bond pattern between near

neighbors (i, i þ 4) along the sequence.

Prediction confidence analysis

We examined the distributions of the Z values for the

a-, b-, and coil-regions as a function of prediction accu-

racy over all 160 training sets. The distribution of the Z-

values for each type of structure was close to the normal

distribution. The accuracy values tended to improve the

further the Z-value deviated from the mean. We also

examined the prediction accuracy as a function of Z-

value differences or DZ values. The resulting histogram

of DZ values and associated prediction accuracies is dis-

played in Figure 9(a).

A lookup table can be constructed from these relation-

ships relating DZ value to percentage of correctness

(probability of being a correct prediction) for individual

positions in sequences. Figure 9(b) shows a sample plot

of secondary structure prediction accuracy (dashed line)

versus the probability of being correct (solid line) for the

TNF receptor (1ca4). It can be seen that the prediction

accuracy from jackknife testing closely follows the proba-

bility of correctness derived from the lookup table.

DISCUSSION AND
CONCLUSIONS

The jackknife test results based on the largest Z-score

show that there is a strong correlation between NP{4,2}

n-gram patterns and secondary structure type. To quan-

tify the relationship, we had to first deal with the skewed

distribution of sequences contained in the PDB and dif-

ferentiate the contribution of local structural propensities

from the contribution of family membership. We

designed 100 IC levels based on unique 4-grams to quan-

tify these effects and the effect of database skew. The

58,831 PDB chains were assigned to 100 IC levels based

on the maximum allowable similarity between sequences

at the same level. The gradual rise between IC10 and

IC95 represented the gradual accumulation of homolo-

gous protein family members. Overall, the prediction ac-

curacy for 50–50% training/test split ranged from 60.4%

at the IC10 level to 65.0% at the IC95 level. We further

broke down prediction into secondary structure type. For

a-helices, the accuracy ranged from 72.2 to 75.2%. For

b-strands, the accuracy ranged from 53 to 64.6%, and

for coils from 54.5 to 57.4%. Prediction results improved

as the IC level increased from 10 to 95% and improve-

ment for b-strands was significantly higher, in general

[see Fig. 8(b)]. This may be explained by the fact that b-
structures are more heavily influenced by remote contacts

than by local propensities. While this is not a surprising

result, the relative contribution of evolutionary informa-

tion to a-helix and b-sheet prediction has not been

quantified in previous studies.

The results of the current studies show that NP{4,2}

patterns capture a combination of evolutionary and local

propensity information that correlates strongly with sec-

ondary structure. This suggests that NP{4,2} patterns

might be a useful input for prediction algorithms that

require both local and global information. A recent study

by Birzele and Kramer indeed confirms that the fre-

quency of patterns of conserved amino acids provides

information that is complementary to established meth-

ods.33 Although the utility of secondary structure predic-

tion algorithms is limited for proteins with known struc-

tural homologs, there is still a small niche where these

may be useful. Future studies are planned, which use

NP{4,2} patterns as inputs to neural nets using training

sets from the PDB, which reflect both secondary struc-

ture and evolutionary relationships. The NP{4,2} pattern

also appears to be well suited for correlation with other

parameters derived from 3D coordinate data such as

packing density, surface accessibility, and protein dynam-

ics. Future studies are also planned which will correlate

NP{4,2} patterns with the collective modes predicted by

elastic network models34 and the inter-residue contact

topologies reflected in Kirchhoff connectivity matrices.35

The basic idea is to correlate sites with unusual combina-

tions of features with functional sites determined from

experimental data.
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