Protein Dynamics & Sequence Analysis

Cryo-EM Analysis

Release

Yan Zhang

December 04, 2024

CONTENTS

1 Introduction 1
1.1 Required Programs o L e e e e e e e e e e 1
1.2 Recommended Programs L 1
1.3 Getting Started L e e e e 1
2 Processing Cryo-EM Electron Density Maps 3
2.1 ParseDensity Map e 3
2.2 Map pseudo-atoms to PDB atomicmodel L Lo 4
3 Elastic Network Model Analysis 7
3.1 Compare results with atomic models L e 7
4 Dynamical Domain Decomposition 9

Bibliography 11

CHAPTER
ONE

INTRODUCTION

This tutorial shows how to use cryo-EM electron density data to perform elastic network model analysis as in [YZ20].
Electron density maps can be provided by the user or retrieved from the EMDB!.

Cryo-electron microscopy (cryo-EM) is a type of transmission electron microscopy where the studied sample, e.g.
protein solution, is rapidly frozen. In structural biology, single particle cryo-EM is gaining more and more popularity
due to its advantage of allowing the observation of protein under near-native conditions at ever-improving resolution,
and as a result, the structures of numerous mega-Dalton biomolecules are captured and stored in the form of cryo-EM
density maps, with resolutions ranging from 2 to 100 A.

Fitting all-atom structures to a density map is time-consuming, and sometimes not feasible due to low resolution. In
addition, for the purpose of studying the dynamics, MD simulations of supercomplexes with atomic details are ex-
tremely computationally expensive. It is thus desirable to apply coarse-grained methods, for example the Anisotropic
Network Model (ANM), to such data to study the “big motions” of molecular machines beyond the atomic level.

ProDy can be used for constructing a bead-and-spring model from cryo-EM data using a previously published algo-
rithm ([TM94]), which can be used for ANM.

1.1 Required Programs

Latest version of ProDy_ is required.

1.2 Recommended Programs

We recommend a visualization program too, such as VMD _.

1.3 Getting Started

To follow this tutorial, you will need the following files:

31M Feb 29 2024 2680.map

31M Feb 29 2024 2688.map
1.1M Feb 29 2024 4alv.pdb.gz
383K Feb 29 2024 4uqgj.pdb.gz

12M Feb 29 2024 EMD-1961.map
225K Feb 29 2024 EMD-1961_mapped.pdb
231K Feb 29 2024 EMD-1961.pdb

55K Feb 29 2024 EMD-2680_mapped.pdb
78K Feb 29 2024 EMD-2680.pdb

57K Feb 29 2024 EMD-2680_protein.pdb

Uhttps://www.ebi.ac.uk/pdbe/emdb/

https://www.ebi.ac.uk/pdbe/emdb/

Cryo-EM Analysis, Release

We recommend that you will follow this tutorial by typing commands in an [Python session, e.g.:

’$ ipython

or with pylab environment:

’$ ipython —--pylab

First, we will make necessary imports from ProDy_ and Matplotlib_ packages.

In [1]: from prody import =
In [2]: from pylab import =

In [3]: ion{()

We have included these imports in every part of the tutorial, so that code copied from the online pages is complete.
You do not need to repeat imports in the same Python session.

2 Chapter 1. Introduction

CHAPTER
TWO

PROCESSING CRYO-EM ELECTRON DENSITY MAPS

Let’s start with essential import statements:

In [1]: from prody import =

In [2]: import numpy as np

2.1 Parse Density Map
The first step is to parse a .map file, which contains information about a density map as the electron density at points
on a grid. This file format is a binary format also known as CCP4 or MRC2014.

We provide parameters to return pseudoatom beads from the electron density map using the Topology Representing
Network algorithm.

Note: Depending on your hardware and the system size, this may take a while. To skip this step, you can load the
structure file for the beads directly in PDB format (EMD-1961.pdb; see below).

In [3]: emd = parseEMD('1961"', cutoff=1.2, n_nodes=200)

In [4]: emd
Out[4]: <AtomGroup: 1961 (200 atoms)>

This function returns an AtomGroup from the electron density map. The cutoff parameter discards any electron
density lower than the given number and we select this based on the suggestion on the ‘EMDB*‘_ website. In this case,
we raise it slightly to remove unassigned density inside the CCT rings.

The parameter n_nodes describes the total number of beads in the system, which we choose to be a few times smaller
than the number of residues to increase efficiency and account for the low resolution.

This procedure is an iterative one and num_iter can be used to set the number of them (the default value is 20).

The resultant structure will look something like the following figure, although with much fewer nodes.

../../_static/figures/8000nodes_with_map.png

Now that the 144x144x144 density grid is converted into an At omGroup object, elastic network model analysis can
be applied to the constructed structure as usual.

First, let’s save the structure so we can use it later:

Cryo-EM Analysis, Release

In [5]: writePDB('EMD-1961.pdb', emd)
Out[5]: 'EMD-1961.pdb'

2.2 Map pseudo-atoms to PDB atomic model

To save time, you may parse pseudo-atoms from a PDB file generated as above. We also parse the PDB model for
comparison later.

In [6]: emd = parsePDB('EMD-1961.pdb")

In [7]: pdb = parsePDB('4al0v', subset='ca')

The order of pseudo-atoms generated by TRN is random and does not follow a sequence like residues in an atomic
model do. Also, they have no chain identifiers. For the purpose of visualization and later comparative analyses, we
reorder the pseudo-atoms and assign the residue and chain identifers to the pseudo-atoms based on the PDB structure
in the following section.

Unique one-to-one mapping of pseudo-atoms to an atomic model is nontrivial, since there is no correspondence be-
tween the beads and the residues of the protein. For simplicity, here we use the k-nearest neighbors algorithm to find
20 closest residues in the atomic model to a given pseudo-atom. Then we create a one-to-one mapping by assigning the
closest residue, or the next closest if it is already assigned, to a pseudo-atom. Note that this is by no means the optimal
one-to-one mapping, and for more complicated methods which guarantees the optimal mapping, see for example the
“stable marriage problem”.

In [8]: from sklearn.neighbors import NearestNeighbors

In [9]: mapping = []

In [10]: nbrs = NearestNeighbors (n_neighbors=20, algorithm='ball tree').fit (pdb.getCoord
In [11]: _, indices = nbrs.kneighbors (emd.getCoords())

In [12]: for neighbors in indices:
et for i in neighbors:
et if i not in mapping:
et mapping.append (i)
et break

In [13]: indices = np.array (mapping)

In [14]: I = np.argsort (indices)

Note that indices returned from NearestNeighbors is a 2-D array with rows corresponding to pseudo-atoms
and columns their k-neighbors. After being processed by the for-loop above, each element of indices is the index
of the residue in the atomic model that should be assigned to the pseudo-atom. Then, argsort () is applied to obtain
indices for reordering the pseudo-atoms following the order of the atoms (residues) in the atomic model.

We first create a At omMap for the atomic model with only the residues that were mapped to a pseudo-atom.

In [15]: pmap = AtomMap (pdb, indices[I])

Then we create a new At omGroup for the pseudo-atoms based on the mapping, such that they are ordered according
to the sequence of residues they are assigned to:

In [16]: emd2 = AtomMap (emd, I).toAtomGroup ()

4 Chapter 2. Processing Cryo-EM Electron Density Maps

0

Cryo-EM Analysis, Release

In [17]: resnums = pmap.getResnums ()
In [18]: emd2.setResnums (resnums)
In [19]: chids = pmap.getChids ()

In [20]: emd2.setChids (chids)

Now we can calculate the RMSD between the pseudo-atoms and their mapped residues in the atomic model:

In [21]: calcRMSD (emd2, pmap)
Out[21]: 3.064789841082093

Finally, we save the ordered pseudo-atom model to a PDB file for visualization and other downstream analyses:

In [22]: writePDB('EMD-1961_mapped.pdb', emd2)
Out[22]: 'EMD-1961_mapped.pdb'

2.2. Map pseudo-atoms to PDB atomic model 5

Cryo-EM Analysis, Release

6 Chapter 2. Processing Cryo-EM Electron Density Maps

CHAPTER
THREE

ELASTIC NETWORK MODEL ANALYSIS

Elastic network model analysis can be applied to the pseudo-atomic model as usual. We use cutof£=60 to account
for the level of coarse-graining (see [PD02]).

In [23]: anm_emd = ANM('TRiC EMDMAP ANM Analysis')
In [24]: anm_emd.buildHessian (emd2, cutoff=60)
In [25]: anm_emd.calcModes (n_modes=5)

In [26]: writeNMD ('tric_anm 3 _modes_200nodes.nmd', anm_emd[:3], emd2)
Out [26]: 'tric_anm_3_modes_200nodes.nmd’'

3.1 Compare results with atomic models

For comparison, let’s perform ENM analysis for the atomic model (i.e. pmap we created earlier) as well, and apply
the reduced model to it to treat residues that are not assigned to a pseudo-atom as the environment.

In [27]: anm_pdb = ANM('4aOv ANM")
In [28]: anm_pdb.buildHessian (pdb)
In [29]: anm_pdb_reduced, _ = reduceModel (anm_pdb, pdb, pmap)

In [30]: anm_pdb_reduced.calcModes (n_modes=5)

Now we compare modes of the pseudo-atomic model to the atomic model:

In [31]: showOverlapTable (anm_emd, anm_pdb_reduced)
Out [31]:
(<matplotlib.image.AxesImage at 0x7£9971b4b710>,
(1,
<matplotlib.colorbar.Colorbar at 0x7£9971b09c90>)

Cryo-EM Analysis, Release

10

0.8

- 0.6

0.4

ANM 4a0v ANM reduced

0.2

0.0

1 2 3 4 5
ANM TRIC EMDMAP ANM Analysis

8 Chapter 3. Elastic Network Model Analysis

CHAPTER
FOUR

DYNAMICAL DOMAIN DECOMPOSITION

Let’s start with essential import statements:

In [1]: from prody import =

In [2]: import numpy as np

We’ll start by parsing the pseudo-atoms from a PDB file generated in the previous step.

In [3]: emd = parsePDB('EMD-1961.pdb")

The order of pseudo-atoms generated by TRN is random and does not follow a sequence like residues in an atomic
model do. Nor do they have no chain identifiers.

As an alternative to reordering the pseudo-atoms and assigning residue and chain identifers to the pseudo-atoms based
on the PDB structure in the previous section, we demonstrate here the use of dynamical domain decomposition using
GNM modes with the function calcGNMDomains (). The number of dynamical domains obtained is approximately
equal to the number of modes used so we use 9 modes to get a similar set of domains to our paper (/YZ20]) including
the zero mode.

In [4]: gnm, _ = calcGNM(emd, selstr='all', zeros=True)

In [5]: domains = calcGNMDomains (gnm[:9])

In [6]: print (np.unique (domains))
(01 23456 7 8]

We actually get 9 in this case as you will see in the figure at the end.

We can assign this data to the At omGroup as follows:

In [7]: emd.setData('domain', domains)

This allows the domains to be used for selection:

In [8]: domainl = emd.select ('domain 1')

In [9]: print (domainl.numAtoms ())
270

Finally, we save a domain-labelled pseudo-atom model to a PDB file for visualization and other downstream analyses,
using the B-factor field for writing the domains:

In [10]: writePDB('EMD-1961_ domains.pdb', emd, beta=domains)
Out[10]: 'EMD-1961_domains.pdb'

Visualisation of the resultant structure will look something like the following figure.

Cryo-EM Analysis, Release

t{c/figures/EMD-1961_9domains.png

We see 9 domains, including 7 pairs of domains and 2 individual domains.

Another round of decomposition with each of the resulting domains can be used to divide them further. For example,
we can decompose the first domain (index 0) into 4 dynamical domains using the first 4 modes, which can be combined
to create subunits or used as they are for comparison with dynamical domains for atomic models.

In [11]: gnmO, domain0O = calcGNM(emd, selstr='domain 0', zeros=True)

In [12]: domainsO0 = calcGNMDomains (gnmO[:4])

In [13]: writePDB('EMD-1961_ domainO_subdomains4.pdb', domain0, beta=domainsO)
Out[13]: 'EMD-1961_domainO_subdomainsd.pdb'

Acknowledgments

Continued development of Protein Dynamics Software ProDy and associated programs is partially supported by the
NIH?-funded RO1 GM139297 entitled “Toward a deeper understanding of allostery and allotargeting by computa-
tional approaches”.

Zhttp://www.nih.gov/

10

Chapter 4. Dynamical Domain Decomposition

http://www.nih.gov/

BIBLIOGRAPHY

[YZ20] Zhang Y, Krieger J, Mikulska-Ruminska K, Kaynak B, Sorzano COS, Carazo JM, Xing J, Bahar I State-
dependent sequential allostery exhibited by chaperonin TRiC/CCT revealed by network analysis of Cryo-EM
maps, Prog. Biophys. Mol. Biol. In Press 10.1016/j.pbiomolbio.2020.08.006.

[PDO2] P. Doruker, R.L. Jernigan, I. Bahar, Dynamics of large proteins through hierarchical levels of coarse-grained
structures, J. Comput. Chem. 2002 23:119-127.

11

	Introduction
	Required Programs
	Recommended Programs
	Getting Started

	Processing Cryo-EM Electron Density Maps
	Parse Density Map
	Map pseudo-atoms to PDB atomic model

	Elastic Network Model Analysis
	Compare results with atomic models

	Dynamical Domain Decomposition
	Bibliography

