
PRS
Release

James Krieger

December 04, 2024

CONTENTS

1 Introduction 1

2 Calculations 3

3 Analysis 5

Bibliography 7

i

ii

CHAPTER

ONE

INTRODUCTION

This tutorial demonstrates how to use perturbation response scanning (PRS) to determine sensors and effectors, which
are important for allosteric signal transduction. The PRS approach is derived from linear response theory where
perturbation forces are applied via a covariance matrix, which can be derived from elastic network models or MD
simulations.

The example used in this tutorial is the AMPA-type ionotropic glutamate receptor (AMPAR; PDB 3kg2), which we
studied using this method (see Figure 6 of [AD15]).

The theory was originally described in [CA09] and [CA10], and extended to include sensors in [IG14].

1.1 Required Programs

The latest version of ProDy_ is recommended along with NumPy_ and Matplotlib_. IPython_ is highly recom-
mended for interactive usage.

1.2 Getting Started

To follow this tutorial, you will not need any additional files.

We recommend that you will follow this tutorial by typing commands in an IPython session, e.g.:

$ ipython

or with pylab environment:

$ ipython --pylab

First, we will make necessary imports from ProDy and Matplotlib packages.

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

We have included these imports in every part of the tutorial, so that code copied from the online pages is complete.
You do not need to repeat imports in the same Python session.

1.3 How to Cite

If you benefited from Perturbation Response Analysis in your research, please cite the following papers:

1

PRS, Release

2 Chapter 1. Introduction

CHAPTER

TWO

CALCULATIONS

Here are the required imports again. You do not need to repeat them if you are still in the same python session.

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

2.1 Loading a structure and applying the anisotropic network model

First, we parse a structure that we want to analyse with PRS. For this tutorial, we will fetch the near-intact full
length AMPAR structure 3kg2 from the PDB. We import a subset containing the calpha atoms, which we will use in
downstream steps.

In [4]: ampar_ca = parsePDB('3kg2', subset='ca')

Next, create an ANM instance and calculate modes from which the covariance matrix can be calculated. We ask for
all modes rather than the default subset of the first 20 global modes to reproduce the published data.

In [5]: anm_ampar = ANM('AMPAR 3kg2')

In [6]: anm_ampar.buildHessian(ampar_ca)

In [7]: anm_ampar.calcModes('all')

PRS can also be performed with any other model from which a covariance matrix can be calculated including GNM
and PCA. A PCA model can also be used with an external covariance matrix using its PCA.setCovariance()
method. ANM is used here to reproduce the published data.

2.2 Showing the PRS matrix with effectiveness and sensitivity pro-
files

The PRS matrix is then calculated from the covariance matrix from the ANM of the AMPAR. This can be automatically
carried out together with plotting using the following code. We supply atoms to allow us to delineate residue numbers
and chains.

In [8]: show = showPerturbResponse(anm_ampar, atoms=ampar_ca)

3

PRS, Release

2.3 Saving the model

You can also save the ANM model in a .npz file for loading again and write an .nmd for visualizing in the NMWiz1.
Adding matrices=True allows us to save the covariance matrix so we can calculate the PRS faster in future analyses.

In [9]: saveModel(anm_ampar, '3kg2', matrices=True)
Out[9]: '3kg2.anm.npz'

In [10]: writeNMD('anm_3kg2.nmd', anm_ampar, ampar_ca)
Out[10]: 'anm_3kg2.nmd'

The next page illustrates some more detailed analyses.

1http://prody.csb.pitt.edu/nmwiz/

4 Chapter 2. Calculations

http://prody.csb.pitt.edu/nmwiz/

CHAPTER

THREE

ANALYSIS

Here are the required imports again. You do not need to repeat them if you are still in the same python session.

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

You can load the model again if you are starting a new session as follows:

In [4]: anm_ampar = loadModel('3kg2.anm.npz')

In [5]: ampar_ca = parsePDB('3kg2', subset='ca')

3.1 Plotting effectiveness and sensitivity profiles

We can use showPerturbResponse with the matrix=False option to plot the effectiveness and sensitivity profiles colored
by chain:

In [6]: show = showPerturbResponse(anm_ampar, atoms=ampar_ca,
...: show_matrix=False)
...:

3.2 Plotting residue-specific effectiveness and sensitivity profiles

To look at the effectiveness that perturbing a residue has in eliciting a response in individual residues (instead of its
overall effectiveness) or to look at the sensitivity of a residue to perturbations of individual residues (instead of its
overall sensitivity), we read out rows or columns from the perturbation response matrix. This can again be shown in a
plot as in Figure 6D.

In [7]: show = showPerturbResponse(anm_ampar, atoms=ampar_ca,
...: show_matrix=False,
...: select='chain B and resnum 84')
...:

We can also calculate the PRS matrix and profiles separately from showPerturbResponse. This gives us more flexibility
with what we show and enables us to do other things with the return values. For example, we could apply a cutoff
to identify residues with particularly high effectiveness and sensitivity as effectors and sensors, or slice out individual
rows or columns and write them into PDB files for visualization (see below).

In [8]: prs_mat, effectiveness, sensitivity = calcPerturbResponse(anm_ampar)

5

PRS, Release

3.3 Writing effectiveness and sensitivity profiles to PDB for visual-
ization

It is sometimes more helpful to understand what is happening using a colored structure. To achieve this we can
overwrite the B-factor or occupancy column of PDB file and use PyMOL or VMD to color the structure by B-factor
or occupancy.

To do this we modify the ampar_ca object and then write a PDB from it as follows:

In [9]: ampar_ca.setBetas(effectiveness)

In [10]: writePDB('3kg2_ca_effectiveness.pdb', ampar_ca)
Out[10]: '3kg2_ca_effectiveness.pdb'

We can also calculate the PRS matrix and profiles separately from showPerturbResponse and slice out individual rows
or columns and write them into PDB files for visualization. We slice rows using axis=0 to obtain the effectiveness
profile

In [11]: B_84_effectiveness = sliceAtomicData(prs_mat, atoms=ampar_ca, axis=0,
....: select='chain B and resnum 84')
....:

In [12]: writePDB('3kg2_ca_B_84_effectiveness.pdb', ampar_ca,
....: beta=B_84_effectiveness[0])
....:

Out[12]: '3kg2_ca_B_84_effectiveness.pdb'

and slice columns using axis=1 to obtain the sensitivity profile

In [13]: B_84_sensitivity = sliceAtomicData(prs_mat, atoms=ampar_ca, axis=1,
....: select='chain B and resnum 84')
....:

In [14]: writePDB('3kg2_ca_B_84_sensitivity.pdb', ampar_ca,
....: beta=B_84_sensitivity)
....:

Out[14]: '3kg2_ca_B_84_sensitivity.pdb'

We generated our Figure 7 using this approach together with the spectrum command from PyMOL.

../../_static/figures/PRS_Dutta_2015_Structure.figure7_highres.png

../template/acknowledgments.rst

6 Chapter 3. Analysis

BIBLIOGRAPHY

[CA09] Atilgan C, Atilgan AR. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding
protein. PLoS Comput. Biol. 2009 5:e1000544.

[CA10] Atilgan C, Gerek ZN, Ozkan SB, Atilgan AR. Manipulation of conformational change in proteins by single-
residue perturbations. Biophys. J. 2010 99(3):933-43

[IG14] General IJ, Liu Y, Blackburn ME, Mao W, Gierasch LM, Bahar I. ATPase subdomain IA is a mediator of
interdomain allostery in Hsp70 molecular chaperones. PLoS Comput. Biol. 2014 10:e1003624.

[AD15] Dutta A, Krieger J, Lee JY, Garcia-Nafria J, Greger IH, Bahar I. Cooperative Dynamics of Intact AMPA and
NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. Structure 2015 23:1692-1704

7

	Introduction
	Calculations
	Analysis
	Bibliography

