
Structure Analysis
Release

Ahmet Bakan, Cihan Kaya

December 04, 2024

CONTENTS

1 Introduction 1
1.1 Required Programs . 1
1.2 Recommended Programs . 1
1.3 Getting Started . 1

2 PDB files 3
2.1 Fetch PDB files . 3
2.2 Parse PDB files . 3
2.3 Write PDB file . 6

3 Blast Search PDB 9
3.1 Blast search . 9
3.2 Best match . 10
3.3 PDB hits . 10
3.4 Download hits . 10

4 Building Biomolecules 11
4.1 Build a Multimer . 11
4.2 Build a Tetramer . 13

5 Alignments 15
5.1 Parse an NMR structure . 15
5.2 Calculate RMSD . 15
5.3 Align coordinate sets . 16
5.4 Write aligned coordinates . 17

6 Structure Comparison 19
6.1 Match chains . 19
6.2 Map onto a chain . 22

7 Intermolecular Contacts 25
7.1 Simple contact selections . 25
7.2 Contacts between different atom groups . 25
7.3 Composite contact selections . 26
7.4 Spherical atom selections . 26
7.5 Fast contact selections . 26

8 Ligand Extraction 29
8.1 Parse reference and blast search . 29
8.2 Align structures and extract ligands . 29

i

ii

CHAPTER

ONE

INTRODUCTION

This tutorial shows how to various ProDy features for managing, handling, and analyzing protein structures.

1.1 Required Programs

Latest version of ProDy_ and Matplotlib_ are required.

1.2 Recommended Programs

IPython_ is strongly recommended.

1.3 Getting Started

To follow this tutorial, you will need the following files:

There are no required files.

We recommend that you will follow this tutorial by typing commands in an IPython session, e.g.:

$ ipython

or with pylab environment:

$ ipython --pylab

First, we will make necessary imports from ProDy and Matplotlib packages.

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

We have included these imports in every part of the tutorial, so that code copied from the online pages is complete.
You do not need to repeat imports in the same Python session.

1

Structure Analysis, Release

2 Chapter 1. Introduction

CHAPTER

TWO

PDB FILES

This examples demonstrates how to use the flexible PDB fetcher, fetchPDB(). Valid inputs are PDB identifier, e.g
:pdb:‘2k39‘, or a list of PDB identifiers, e.g. ["2k39", "1mkp", "1etc"]. Compressed PDB files (pdb.gz)
will be saved to the current working directory or a target folder.

2.1 Fetch PDB files

2.1.1 Single file
We start by importing everything from the ProDy package:

In [1]: from prody import *

The function will return a filename if the download is successful.

In [2]: filename = fetchPDB('5uoj')

In [3]: filename
Out[3]: '5uoj.pdb.gz'

2.1.2 Multiple files
This function also accepts a list of PDB identifiers:

In [4]: filenames = fetchPDB(['5uoj', '1r39', '@!~#'])

In [5]: filenames
Out[5]: ['5uoj.pdb.gz', '1r39.pdb.gz', None]

For failed downloads, None will be returned (or the list will contain None item).

Also note that in this case we passed a folder name. Files are saved in this folder, after it is created if it did not exist.

ProDy will give you a report of download results and return a list of filenames. The report will be printed on the
screen, which in this case would be:

@> 5uoj (./5uoj.pdb.gz) is found in the target directory.
@> @!~# is not a valid identifier.
@> 1r39 downloaded (./1r39.pdb.gz)
@> PDB download completed (1 found, 1 downloaded, 1 failed).

2.2 Parse PDB files

ProDy offers a fast and flexible PDB parser, parsePDB(). Parser can be used to read well defined subsets of atoms,
specific chains or models (in NMR structures) to boost the performance. This example shows how to use the flexible

3

Structure Analysis, Release

parsing options.

Three types of input are accepted from user:

• PDB file path, e.g. "../1MKP.pdb"

• compressed (gzipped) PDB file path, e.g. "5uoj.pdb.gz"

• PDB identifier, e.g. :pdb:‘2k39‘

Output is an AtomGroup instance that stores atomic data and can be used as input to functions and classes for
dynamics analysis.

2.2.1 Parse a file
You can parse PDB files by passing a filename (gzipped files are handled). We do so after downloading a PDB file
(see Fetch PDB files for more information):

In [6]: fetchPDB('5uoj')
Out[6]: '5uoj.pdb.gz'

In [7]: atoms = parsePDB('5uoj')

In [8]: atoms
Out[8]: <AtomGroup: 5uoj (3138 atoms)>

Parser returns an AtomGroup instance.

Also note that the time it took to parse the file is printed on the screen. This includes the time that it takes to evaluate
coordinate lines and build an AtomGroup instance and excludes the time spent on reading the file from disk.

2.2.2 Use an identifier
PDB files can be parsed by passing simply an identifier. Parser will look for a PDB file that matches the given
identifier in the current working directory. If a matching file is not found, ProDy will downloaded it from PDB FTP
server automatically and saved it in the current working directory.

In [9]: atoms = parsePDB('1mkp')

In [10]: atoms
Out[10]: <AtomGroup: 1mkp (1183 atoms)>

2.2.3 Subsets of atoms
Parser can be used to parse backbone or C𝛼 atoms:

In [11]: backbone = parsePDB('1mkp', subset='bb')

In [12]: backbone
Out[12]: <AtomGroup: 1mkp_bb (576 atoms)>

In [13]: calpha = parsePDB('1mkp', subset='ca')

In [14]: calpha
Out[14]: <AtomGroup: 1mkp_ca (144 atoms)>

2.2.4 Specific chains
Parser can be used to parse a specific chain from a PDB file:

4 Chapter 2. PDB files

Structure Analysis, Release

In [15]: chA = parsePDB('3mkb', chain='A')

In [16]: chA
Out[16]: <AtomGroup: 3mkbA (1198 atoms)>

In [17]: chC = parsePDB('3mkb', chain='C')

In [18]: chC
Out[18]: <AtomGroup: 3mkbC (1189 atoms)>

Multiple chains can also be parsed in the same way:

In [19]: chAC = parsePDB('3mkb', chain='AC')

In [20]: chAC
Out[20]: <AtomGroup: 3mkbAC (2387 atoms)>

2.2.5 Specific models
Parser can be used to parse a specific model from a file:

In [21]: model1 = parsePDB('2k39', model=10)

In [22]: model1
Out[22]: <AtomGroup: 2k39 (1231 atoms)>

2.2.6 Alternate locations
When a PDB file contains alternate locations for some of the atoms, by default alternate locations with indicator A are
parsed.

In [23]: altlocA = parsePDB('1ejg')

In [24]: altlocA
Out[24]: <AtomGroup: 1ejg (637 atoms)>

Specific alternate locations can be parsed as follows:

In [25]: altlocB = parsePDB('1ejg', altloc='B')

In [26]: altlocB
Out[26]: <AtomGroup: 1ejg (634 atoms)>

Note that in this case number of atoms are different between the two atom groups. This is because the residue types
of atoms with alternate locations are different.

Also, all alternate locations can be parsed as follows:

In [27]: all_altlocs = parsePDB('1ejg', altloc=True)

In [28]: all_altlocs
Out[28]: <AtomGroup: 1ejg (637 atoms; active #0 of 3 coordsets)>

Note that this time parser returned three coordinate sets. One for each alternate location indicator found in this file (A,
B, C). When parsing multiple alternate locations, parser will expect for the same residue type for each atom with an
alternate location. If residue names differ, a warning message will be printed.

2.2. Parse PDB files 5

Structure Analysis, Release

2.2.7 Composite arguments
Parser can be used to parse coordinates from a specific model for a subset of atoms of a specific chain:

In [29]: composite = parsePDB('2k39', model=10, chain='A', subset='ca')

In [30]: composite
Out[30]: <AtomGroup: 2k39A_ca (76 atoms)>

2.2.8 Header data

PDB parser can be used to extract header data in a dict1 from PDB files as follows:

In [31]: atoms, header = parsePDB('1ubi', header=True)

In [32]: list(header)
Out[32]:
['A',
'related_entries',
'sheet',
'classification',
'reference',
'title',
'sheet_range',
'polymers',
'resolution',
'space_group',
'helix_range',
'chemicals',
'experiment',
'helix',
'version',
'authors',
'identifier',
'deposition_date',
'biomoltrans']

In [33]: header['experiment']
Out[33]: 'X-RAY DIFFRACTION'

In [34]: header['resolution']
Out[34]: 1.8

It is also possible to parse only header data by passing model=0 as an argument:

In [35]: header = parsePDB('1ubi', header=True, model=0)

or using parsePDBHeader() function:

In [36]: header = parsePDBHeader('1ubi')

2.3 Write PDB file

PDB files can be written using writePDB() function. This example shows how to write PDB files for AtomGroup
instances and subsets of atoms.

1http://docs.python.org/library/stdtypes.html#dict

6 Chapter 2. PDB files

http://docs.python.org/library/stdtypes.html#dict

Structure Analysis, Release

2.3.1 Write all atoms
All atoms in an AtomGroup can be written in PDB format as follows:

In [37]: writePDB('MKP3.pdb', atoms)
Out[37]: 'MKP3.pdb'

Upon successful writing of PDB file, filename is returned.

2.3.2 Write a subset
It is also possible to write subsets of atoms in PDB format:

In [38]: alpha_carbons = atoms.select('calpha')

In [39]: writePDB('1mkp_ca.pdb', alpha_carbons)
Out[39]: '1mkp_ca.pdb'

In [40]: backbone = atoms.select('backbone')

In [41]: writePDB('1mkp_bb.pdb', backbone)
Out[41]: '1mkp_bb.pdb'

2.3. Write PDB file 7

Structure Analysis, Release

8 Chapter 2. PDB files

CHAPTER

THREE

BLAST SEARCH PDB

This example demonstrates how to use Protein Data Bank blast search function, blastPDB().

blastPDB() is a utility function which can be used to check if structures matching a sequence exist in PDB or to
identify a set of related structures for Ensemble Analysis2.

We will used amino acid sequence of a protein, e.g. ASFPVEILPFLYLGCAKDSTNLDVLEEFGIKYILNVTPNLPNLF...YDIVKMKKSNISPNFNFMGQLLDFERTL

The blastPDB() function accepts sequence as a Python str().

Output will be PDBBlastRecord instance that stores PDB hits and returns to the user those sharing sequence
identity above a user specified value.

3.1 Blast search

We start by importing everything from the ProDy package:

In [1]: from prody import *

Let’s search for structures similar to that of MKP-3, using its sequence:

In [2]: blast_record = blastPDB('''ASFPVEILPFLYLGCAKDSTNLDVLEEFGIKYILNVTPNL
...: PNLFENAGEFKYKQIPISDHWSQNLSQFFPEAISFIDEAR
...: GKNCGVLVHSLAGISRSVTVTVAYLMQKLNLSMNDAYDIV
...: KMKKSNISPNFNFMGQLLDFERTL''')
...:

blastPDB() function returns a PDBBlastRecord. It is a good practice to save this record on disk, as NCBI may
not respond to repeated searches for the same sequence. We can do this using Python standard library pickle3 as
follows:

In [3]: import pickle

Record is save using dump()4 function into an open file:

In [4]: pickle.dump(blast_record, open('mkp3_blast_record.pkl', 'wb'))

Then, it can be loaded using load()5 function:

In [5]: blast_record = pickle.load(open('mkp3_blast_record.pkl', 'rb'))

2http://www.bahargroup.org/prody/tutorials/ensemble_analysis/index.html#pca
3http://docs.python.org/library/pickle.html#module-pickle
4http://docs.python.org/library/pickle.html#pickle.dump
5http://docs.python.org/library/pickle.html#pickle.load

9

http://www.bahargroup.org/prody/tutorials/ensemble_analysis/index.html#pca
http://docs.python.org/library/pickle.html#module-pickle
http://docs.python.org/library/pickle.html#pickle.dump
http://docs.python.org/library/pickle.html#pickle.load

Structure Analysis, Release

3.2 Best match

To get the best match, PDBBlastRecord.getBest() method can be used:

In [6]: best = blast_record.getBest()

In [7]: best['pdb_id']
Out[7]: '1mkp'

In [8]: best['percent_identity']
Out[8]: 100.0

3.3 PDB hits
In [9]: hits = blast_record.getHits(percent_identity=90, percent_overlap=70)

In [10]: list(hits)
Out[10]: ['1mkp']

This results in only MKP-3 itself, since percent_identity argument was set to 90:

In [11]: hits = blast_record.getHits(percent_identity=50)

In [12]: list(hits)
Out[12]: ['1m3g', '2hxp', '3lj8', '3ezz', '1mkp']

In [13]: hits = blast_record.getHits(percent_identity=40)

In [14]: list(hits)
Out[14]: ['3lj8', '1mkp', '1zzw', '2g6z', '2hxp', '3ezz', '1m3g', '2oud']

This resulted in more hits, including structures of MKP-2, MKP-4, and MKP-5 More information on a hit can be
obtained as follows:

In [15]: hits['1zzw']['percent_identity']
Out[15]: 49.27536231884058

In [16]: hits['1zzw']['align-len']
Out[16]: 138

In [17]: hits['1zzw']['identity']
Out[17]: 68

To obtain all hits, simply run the function without specifying parameters:

In [18]: all_hits = blast_record.getHits()

3.4 Download hits

PDB hits can be downloaded using fetchPDB() function:

filenames = fetchPDB(hits.keys())
filenames

10 Chapter 3. Blast Search PDB

CHAPTER

FOUR

BUILDING BIOMOLECULES

Some PDB files contain coordinates for a monomer of a functional/biological multimer (biomolecule). ProDy offers
functions to build structures of biomolecules using the header data from the PDB file. We will use PDB file that
contains the coordinates for a monomer of a biological multimeric protein and the transformations in the header
section to generate the multimer coordinates. Output will be an AtomGroup instance that contains the multimer
coordinates.

We start by importing everything from the ProDy package:

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

4.1 Build a Multimer

Let’s build the dimeric form of :pdb:‘3enl‘ of :wiki:‘enolase‘:

In [4]: monomer, header = parsePDB('3enl', header=True)

In [5]: monomer
Out[5]: <AtomGroup: 3enl (3647 atoms)>

Note that we passed header=True argument to parse header data in addition to coordinates.

In [6]: showProtein(monomer);

In [7]: legend();

11

Structure Analysis, Release

Let’s get the dimer coordinates using buildBiomolecules() function:

In [8]: dimer = buildBiomolecules(header, monomer)

In [9]: dimer
Out[9]: <AtomGroup: 3enl biomolecule 1 (7294 atoms)>

This function takes biomolecular tarnsformations from the header dictionary (item with key ’biomoltrans’) and
applies them to the monomer.

In [10]: showProtein(dimer);

In [11]: legend();

The dimer object now has two chains:

In [12]: list(dimer.iterChains())
Out[12]:

12 Chapter 4. Building Biomolecules

Structure Analysis, Release

[<Chain: A from Segment 1 from 3enl biomolecule 1 (790 residues, 3647 atoms)>,
<Chain: A from Segment 2 from 3enl biomolecule 1 (790 residues, 3647 atoms)>]

4.2 Build a Tetramer

Let’s build the tetrameric form of :pdb:‘1k4c‘ of :wiki:‘KcsA_potassium_channel‘:

In [13]: monomer, header = parsePDB('1k4c', header=True)

In [14]: monomer
Out[14]: <AtomGroup: 1k4c (4534 atoms)>

In [15]: showProtein(monomer);

In [16]: legend();

Note that we do not want to replicate potassium ions, so we will exclude them:

In [17]: potassium = monomer.name_K

In [18]: potassium
Out[18]: <Selection: 'name K' from 1k4c (7 atoms)>

In [19]: without_K = ~ potassium

In [20]: without_K
Out[20]: <Selection: 'not (name K)' from 1k4c (4527 atoms)>

In [21]: tetramer = buildBiomolecules(header, without_K)

In [22]: tetramer
Out[22]: <AtomGroup: 1k4c Selection 'not (name K)' biomolecule 1 (18108 atoms)>

Now, let’s append potassium ions to the tetramer:

In [23]: potassium.setChids('K')

4.2. Build a Tetramer 13

Structure Analysis, Release

In [24]: kcsa = tetramer + potassium.copy()

In [25]: kcsa.setTitle('KcsA')

Here is a view of the tetramer:

In [26]: showProtein(kcsa);

In [27]: legend();

Let’s get a list of all the chains:

In [28]: list(kcsa.iterChains())
Out[28]:
[<Chain: A from Segment 1 from KcsA (426 residues, 1822 atoms)>,
<Chain: B from Segment 1 from KcsA (417 residues, 1851 atoms)>,
<Chain: C from Segment 1 from KcsA (162 residues, 854 atoms)>,
<Chain: A from Segment 2 from KcsA (426 residues, 1822 atoms)>,
<Chain: B from Segment 2 from KcsA (417 residues, 1851 atoms)>,
<Chain: C from Segment 2 from KcsA (162 residues, 854 atoms)>,
<Chain: A from Segment 3 from KcsA (426 residues, 1822 atoms)>,
<Chain: B from Segment 3 from KcsA (417 residues, 1851 atoms)>,
<Chain: C from Segment 3 from KcsA (162 residues, 854 atoms)>,
<Chain: A from Segment 4 from KcsA (426 residues, 1822 atoms)>,
<Chain: B from Segment 4 from KcsA (417 residues, 1851 atoms)>,
<Chain: C from Segment 4 from KcsA (162 residues, 854 atoms)>,
<Chain: K from Segment from KcsA (7 residues, 7 atoms)>]

You see that chain identifiers are preserved within monomers, and monomers have different segment names. To get
chain B from first monomer with segment name A, we would do the following:

In [29]: kcsa['A', 'B']

14 Chapter 4. Building Biomolecules

CHAPTER

FIVE

ALIGNMENTS

AtomGroup instances can store multiple coordinate sets, i.e. multiple models from an NMR structure. This example
shows how to align such coordinate sets using alignCoordsets() function.

Resulting AtomGroup will have its coordinate sets superposed onto the active coordinate set selected by the user.

5.1 Parse an NMR structure

We start by importing everything from the ProDy package:

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

We use :pdb:‘1joy‘ that contains 21 models homodimeric domain of EnvZ protein from E. coli.

In [4]: pdb = parsePDB('1joy')

In [5]: pdb.numCoordsets()
Out[5]: 21

5.2 Calculate RMSD
In [6]: rmsds = calcRMSD(pdb)

In [7]: rmsds.mean()
Out[7]: 37.506911678400954

This function calculates RMSDs with respect to the active coordinate set, which is the first model in this case.

In [8]: showProtein(pdb);

In [9]: pdb.setACSIndex(1) # model 2 in PDB is now the active coordinate set

In [10]: showProtein(pdb);

In [11]: legend();

15

Structure Analysis, Release

5.3 Align coordinate sets

We will superpose all models onto the first model in the file using based on C𝛼 atom positions:

In [12]: pdb.setACSIndex(0)

In [13]: alignCoordsets(pdb.calpha);

To use all backbone atoms, pdb.backbone can be passed as argument. See Atom Selections6 for more information
on making selections.

Coordinate sets are superposed onto the first model (the active coordinate set).

In [14]: rmsds = calcRMSD(pdb)

In [15]: rmsds.mean()
Out[15]: 3.276891215176855

In [16]: showProtein(pdb);

In [17]: pdb.setACSIndex(1) # model 2 in PDB is now the active coordinate set

In [18]: showProtein(pdb);

In [19]: legend();

6http://www.bahargroup.org/prody/manual/reference/atomic/select.html#selections

16 Chapter 5. Alignments

http://www.bahargroup.org/prody/manual/reference/atomic/select.html#selections

Structure Analysis, Release

5.4 Write aligned coordinates

Using writePDB() function, we can write the aligned coordinate sets in PDB format:

In [20]: writePDB('1joy_aligned.pdb', pdb)
Out[20]: '1joy_aligned.pdb'

5.4. Write aligned coordinates 17

Structure Analysis, Release

18 Chapter 5. Alignments

CHAPTER

SIX

STRUCTURE COMPARISON

This section shows how to find identical or similar protein chains in two PDB files and align them.

proteins module contains functions for matching and mapping chains. Results can be used for RMSD fitting and
PCA analysis.

Output will be AtomMap instances that can be used as input to ProDy classes and functions.

6.1 Match chains

We start by importing everything from the ProDy package:

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

Matching chains is useful when comparing two structures. We will find matching chains in two different HIV
:wiki:‘Reverse Transcriptase‘ structures.

First we define a function that prints information on paired (matched) chains:

In [4]: def printMatch(match):
...: print('Chain 1 : {}'.format(match[0]))
...: print('Chain 2 : {}'.format(match[1]))
...: print('Length : {}'.format(len(match[0])))
...: print('Seq identity: {}'.format(match[2]))
...: print('Seq overlap : {}'.format(match[3]))
...: print('RMSD : {}\n'.format(calcRMSD(match[0], match[1])))
...:

Now let’s parse bound RT structure :pdb:‘1vrt‘ and unbound structure :pdb:‘1dlo‘:

In [5]: bound_all = parsePDB('1vrt')

In [6]: unbound_all = parsePDB('1dlo')

Let’s verify that these structures are not aligned:

In [7]: showProtein(unbound_all, bound_all);

In [8]: legend();

19

Structure Analysis, Release

We find matching chains as follows:

We first select just the protein for matching:

In [9]: bound = bound_all.protein

In [10]: unbound = unbound_all.protein

In [11]: matches = matchChains(bound, unbound)

In [12]: for match in matches:
....: printMatch(match)
....:

Chain 1 : AtomMap Chain B from 1vrt -> Chain B from 1dlo
Chain 2 : AtomMap Chain B from 1dlo -> Chain B from 1vrt
Length : 400
Seq identity: 99.2518703242
Seq overlap : 96
RMSD : 110.45149192

Chain 1 : AtomMap Chain A from 1vrt -> Chain A from 1dlo
Chain 2 : AtomMap Chain A from 1dlo -> Chain A from 1vrt
Length : 524
Seq identity: 99.0458015267
Seq overlap : 94
RMSD : 142.084163869

This resulted in two matches. Chains A and B of two structures are paired. The chains in the matches contain only C𝛼
atoms:

In [13]: match[0][0].iscalpha
Out[13]: True

In [14]: match[0][1].iscalpha
Out[14]: True

For a structural alignment based on both chains, we merge these matches as follows:

20 Chapter 6. Structure Comparison

Structure Analysis, Release

In [15]: bound_ca = matches[0][0] + matches[1][0]

In [16]: bound_ca
Out[16]: <AtomMap: (AtomMap Chain B from 1vrt -> Chain B from 1dlo) + (AtomMap Chain A from 1vrt -> Chain A from 1dlo) from 1vrt (924 atoms)>

In [17]: unbound_ca = matches[0][1] + matches[1][1]

In [18]: unbound_ca
Out[18]: <AtomMap: (AtomMap Chain B from 1dlo -> Chain B from 1vrt) + (AtomMap Chain A from 1dlo -> Chain A from 1vrt) from 1dlo (924 atoms)>

Let’s calculate RMSD:

In [19]: calcRMSD(bound_ca, unbound_ca)
Out[19]: 129.34348658001392

We find the transformation that minimizes RMSD between these two selections and apply it to unbound structure:

In [20]: calcTransformation(unbound_ca, bound_ca).apply(unbound);

In [21]: calcRMSD(bound_ca, unbound_ca)
Out[21]: 6.0020747465625375

Let’s see the aligned structures now:

In [22]: showProtein(unbound, bound);

In [23]: legend();

By default, matchChains() function matches C𝛼 atoms. subset argument allows for matching larger numbers of
atoms. We can match backbone atoms as follows:

In [24]: matches = matchChains(bound, unbound, subset='bb')

In [25]: for match in matches:
....: printMatch(match)
....:

Chain 1 : AtomMap Chain B from 1vrt -> Chain B from 1dlo
Chain 2 : AtomMap Chain B from 1dlo -> Chain B from 1vrt
Length : 1600

6.1. Match chains 21

Structure Analysis, Release

Seq identity: 99.2518703242
Seq overlap : 96
RMSD : 1.71102621571

Chain 1 : AtomMap Chain A from 1vrt -> Chain A from 1dlo
Chain 2 : AtomMap Chain A from 1dlo -> Chain A from 1vrt
Length : 2096
Seq identity: 99.0458015267
Seq overlap : 94
RMSD : 7.78386812028

Or, we can match all atoms as follows:

In [26]: matches = matchChains(bound, unbound, subset='all')

In [27]: for match in matches:
....: printMatch(match)
....:

Chain 1 : AtomMap Chain B from 1vrt -> Chain B from 1dlo
Chain 2 : AtomMap Chain B from 1dlo -> Chain B from 1vrt
Length : 3225
Seq identity: 99.2518703242
Seq overlap : 96
RMSD : 2.20947196284

Chain 1 : AtomMap Chain A from 1vrt -> Chain A from 1dlo
Chain 2 : AtomMap Chain A from 1dlo -> Chain A from 1vrt
Length : 4159
Seq identity: 99.0458015267
Seq overlap : 94
RMSD : 7.83814068858

6.2 Map onto a chain

Mapping is different from matching. When chains are matched, all matching atoms are returned as AtomMap in-
stances. When atoms are mapped onto a chain, missing atoms are replaced by dummy atoms. The length of the
mapping is equal to the length of chain. Mapping is used particularly useful in assembling coordinate data for the
analysis of heterogeneous datasets (see Ensemble Analysis7).

Let’s map bound structure onto unbound chain A (subunit p66):

In [28]: def printMapping(mapping):
....: print('Mapped chain : {}'.format(mapping[0]))
....: print('Target chain : {}'.format(mapping[1]))
....: print('Mapping length : {}'.format(len(mapping[0])))
....: print('# of mapped atoms: {}'.format(mapping[0].numMapped()))
....: print('# of dummy atoms : {}'.format(mapping[0].numDummies()))
....: print('Sequence identity: {}'.format(mapping[2]))
....: print('Sequence overlap : {}\n'.format(mapping[3]))
....:

In [29]: unbound_hv = unbound.getHierView()

In [30]: unbound_A = unbound_hv['A']

In [31]: mappings = mapOntoChain(bound, unbound_A)

7http://www.bahargroup.org/prody/tutorials/ensemble_analysis/index.html#pca

22 Chapter 6. Structure Comparison

http://www.bahargroup.org/prody/tutorials/ensemble_analysis/index.html#pca

Structure Analysis, Release

In [32]: for mapping in mappings:
....: printMapping(mapping)
....:

Mapped chain : AtomMap Chain A from 1vrt -> Chain A from 1dlo
Target chain : AtomMap Chain A from 1dlo -> Chain A from 1vrt
Mapping length : 4370
of mapped atoms: 4159
of dummy atoms : 211
Sequence identity: 99
Sequence overlap : 94

Mapped chain : AtomMap Chain B from 1vrt -> Chain A from 1dlo
Target chain : AtomMap Chain A from 1dlo -> Chain B from 1vrt
Mapping length : 4370
of mapped atoms: 3209
of dummy atoms : 1161
Sequence identity: 99
Sequence overlap : 72

mapOntoChain() mapped all atoms. subset argument allows for matching other sets of atoms. We can map
backbone atoms as follows:

In [33]: mappings = mapOntoChain(bound, unbound_A, subset='bb')

In [34]: for mapping in mappings:
....: printMapping(mapping)
....:

Mapped chain : AtomMap Chain A from 1vrt -> Chain A from 1dlo
Target chain : AtomMap Chain A from 1dlo -> Chain A from 1vrt
Mapping length : 2224
of mapped atoms: 2096
of dummy atoms : 128
Sequence identity: 99
Sequence overlap : 94

Mapped chain : AtomMap Chain B from 1vrt -> Chain A from 1dlo
Target chain : AtomMap Chain A from 1dlo -> Chain B from 1vrt
Mapping length : 2224
of mapped atoms: 1604
of dummy atoms : 620
Sequence identity: 99
Sequence overlap : 72

Or, we can map all atoms as follows:

In [35]: mappings = mapOntoChain(bound, unbound_A, subset='all')

In [36]: for mapping in mappings:
....: printMapping(mapping)
....:

Mapped chain : AtomMap Chain A from 1vrt -> Chain A from 1dlo
Target chain : AtomMap Chain A from 1dlo -> Chain A from 1vrt
Mapping length : 4370
of mapped atoms: 4159
of dummy atoms : 211
Sequence identity: 99
Sequence overlap : 94

6.2. Map onto a chain 23

Structure Analysis, Release

Mapped chain : AtomMap Chain B from 1vrt -> Chain A from 1dlo
Target chain : AtomMap Chain A from 1dlo -> Chain B from 1vrt
Mapping length : 4370
of mapped atoms: 3209
of dummy atoms : 1161
Sequence identity: 99
Sequence overlap : 72

24 Chapter 6. Structure Comparison

CHAPTER

SEVEN

INTERMOLECULAR CONTACTS

This examples shows how to identify intermolecular contacts, e.g. protein atoms interacting with a bound inhibitor. A
structure of a protein-ligand complex in PDB format will be used. Output will be Selection instances that points to
atoms matching the contact criteria given by the user. Selection instances can be used as input to other functions
for further analysis.

7.1 Simple contact selections

We start by importing everything from the ProDy package:

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

ProDy selection engine has a powerful feature that enables identifying intermolecular contacts very easily. We will
see this by identifying protein atoms interacting with an inhibitor.

We start with parsing a PDB file that contains a protein and a bound ligand.

In [4]: pdb = parsePDB('1zz2')

:pdb:‘1zz2‘ contains an inhibitor bound p38 MAP kinase structure. Residue name of inhibitor is :pdbhet:‘B11‘.
Protein atoms interacting with the inhibitor can simply be identified as follows:

In [5]: contacts = pdb.select('protein and within 4 of resname B11')

In [6]: repr(contacts)
Out[6]: "<Selection: 'protein and wit... of resname B11' from 1zz2 (50 atoms)>"

’protein and within 4 of resname B11’ is interpreted as select protein atoms that are within 4 A of
residue whose name is B11. This selects protein atoms that within 4 A of the inhibitor.

7.2 Contacts between different atom groups

In some cases, the protein and the ligand may be in separate files. We will imitate this case by making copies of protein
and ligand.

In [7]: inhibitor = pdb.select('resname B11').copy()

In [8]: repr(inhibitor)
Out[8]: "<AtomGroup: 1zz2 Selection 'resname B11' (33 atoms)>"

25

Structure Analysis, Release

In [9]: protein = pdb.select('protein').copy()

In [10]: repr(protein)
Out[10]: "<AtomGroup: 1zz2 Selection 'protein' (2716 atoms)>"

We see that inhibitor molecule contains 33 atoms.

Now we have two different atom groups, and we want protein atoms that are within 4 Å of the inhibitor.

In [11]: contacts = protein.select('within 4 of inhibitor', inhibitor=inhibitor)

In [12]: repr(contacts)
Out[12]: "<Selection: 'index 227 230 2... 1354 1356 1358' from 1zz2 Selection 'protein' (50 atoms)>"

We found that 50 protein atoms are contacting with the inhibitor. In this case, we passed the atom group inhibitor as a
keyword argument to the selection function. Note that the keyword must match that is used in the selection string.

7.3 Composite contact selections

Now, let’s try something more sophisticated. We select C𝛼 atoms of residues that have at least one atom interacting
with the inhibitor:

In [13]: contacts_ca = protein.select(
....: 'calpha and (same residue as within 4 of inhibitor)',
....: inhibitor=inhibitor)
....:

In [14]: repr(contacts_ca)
Out[14]: "<Selection: 'index 225 232 2... 1328 1351 1359' from 1zz2 Selection 'protein' (20 atoms)>"

In this case, ’calpha and (same residue as within 4 of inhibitor)’ is interpreted as select C𝛼
atoms of residues that have at least one atom within 4 A of any inhibitor atom.

This shows that, 20 residues have atoms interacting with the inhibitor.

7.4 Spherical atom selections

Similarly, one can give arbitrary coordinate arrays as keyword arguments to identify atoms in a spherical region. Let’s
find backbone atoms within 5 Å of point (25, 73, 13):

In [15]: sel = protein.select('backbone and within 5 of somepoint',
....: somepoint=np.array((25, 73, 13)))
....:

7.5 Fast contact selections

For repeated and faster contact identification Contacts class is recommended.

We pass the protein as argument:

In [16]: protein_contacts = Contacts(protein)

The following corresponds to "within 4 of inhibitor":

In [17]: contants = protein_contacts.select(4, inhibitor)

26 Chapter 7. Intermolecular Contacts

Structure Analysis, Release

In [18]: repr(contacts)
Out[18]: "<Selection: 'index 227 230 2... 1354 1356 1358' from 1zz2 Selection 'protein' (50 atoms)>"

This method is 20 times faster than the one in the previous part, but it is limited to selecting only contacting atoms
(other selection arguments cannot be passed). Again, it should be noted that Contacts does not update the KDTree
that it uses, so it should be used if protein coordinates does not change between selections.

7.5. Fast contact selections 27

Structure Analysis, Release

28 Chapter 7. Intermolecular Contacts

CHAPTER

EIGHT

LIGAND EXTRACTION

This example shows how to align structures of the same protein and extract bound ligands from these structures.

matchAlign() function can be used for aligning protein structures. This example shows how to use it to extract
ligands from multiple PDB structures after superposing the structures onto a reference. Output will be PDB files that
contain ligands superposed onto the reference structure.

8.1 Parse reference and blast search

We start by importing everything from the ProDy package:

In [1]: from prody import *

In [2]: from pylab import *

In [3]: ion()

First, we parse the reference structure and blast search PDB for similar structure:

In [4]: p38 = parsePDB('5uoj')

In [5]: seq = p38['A'].getSequence()

In [6]: blast_record = blastPDB(seq)

It is a good practice to save this record on disk, as NCBI may not respond to repeated searches for the same sequence.
We can do this using Python standard library pickle8 as follows:

In [7]: import pickle

Record is save using dump()9 function into an open file:

In [8]: pickle.dump(blast_record, open('p38_blast_record.pkl', 'wb'))

Then, it can be loaded using load()10 function:

In [9]: blast_record = pickle.load(open('p38_blast_record.pkl', 'rb'))

8.2 Align structures and extract ligands

Then, we parse the hits one-by-one, superpose them onto the reference structure, and extract ligands:

8http://docs.python.org/library/pickle.html#module-pickle
9http://docs.python.org/library/pickle.html#pickle.dump

10http://docs.python.org/library/pickle.html#pickle.load

29

http://docs.python.org/library/pickle.html#module-pickle
http://docs.python.org/library/pickle.html#pickle.dump
http://docs.python.org/library/pickle.html#pickle.load

Structure Analysis, Release

In [10]: for pdb_id in blast_record.getHits(90, 70):
....: try:
....: pdb = parsePDB(pdb_id)
....: pdb = matchAlign(pdb, p38)[0]
....: except:
....: continue
....: else:
....: ligand = pdb.select('not protein and not water')
....: repr(ligand)
....: if ligand:
....: writePDB(pdb_id + '_ligand.pdb', ligand)
....:

In [11]: !ls *_ligand.pdb
1w83_ligand.pdb 3d7z_ligand.pdb 3fmk_ligand.pdb 3oef_ligand.pdb
1wbo_ligand.pdb 3d83_ligand.pdb 3fmn_ligand.pdb 3zsg_ligand.pdb
1wbs_ligand.pdb 3e92_ligand.pdb 3iph_ligand.pdb 3zya_ligand.pdb
2fst_ligand.pdb 3e93_ligand.pdb 3k3i_ligand.pdb
2npq_ligand.pdb 3fl4_ligand.pdb 3kq7_ligand.pdb
2zaz_ligand.pdb 3fln_ligand.pdb 3mpt_ligand.pdb

Ligands bound to p38 are outputted. Note that output PDB files may contain multiple ligands.

The output can be loaded into a molecular visualization tool for analysis.

Acknowledgments

Continued development of Protein Dynamics Software ProDy and associated programs is partially supported by the
NIH11-funded R01 GM139297 entitled “Toward a deeper understanding of allostery and allotargeting by computa-
tional approaches”.

11http://www.nih.gov/

30 Chapter 8. Ligand Extraction

http://www.nih.gov/

	Introduction
	Required Programs
	Recommended Programs
	Getting Started

	PDB files
	Fetch PDB files
	Parse PDB files
	Write PDB file

	Blast Search PDB
	Blast search
	Best match
	PDB hits
	Download hits

	Building Biomolecules
	Build a Multimer
	Build a Tetramer

	Alignments
	Parse an NMR structure
	Calculate RMSD
	Align coordinate sets
	Write aligned coordinates

	Structure Comparison
	Match chains
	Map onto a chain

	Intermolecular Contacts
	Simple contact selections
	Contacts between different atom groups
	Composite contact selections
	Spherical atom selections
	Fast contact selections

	Ligand Extraction
	Parse reference and blast search
	Align structures and extract ligands

