Source code for prody.proteins.interactions

# -*- coding: utf-8 -*-

"""This module called InSty defines functions for calculating different types of interactions 
in protein structure, between proteins or between protein and ligand.
The following interactions are available for protein interactions:
        (1) Hydrogen bonds
        (2) Salt Bridges
        (3) Repulsive Ionic Bonding 
        (4) Pi stacking interactions
        (5) Pi-cation interactions
        (6) Hydrophobic interactions
        (7) Disulfide Bonds
"""

__author__ = 'Karolina Mikulska-Ruminska'
__credits__ = ['James Krieger', 'Karolina Mikulska-Ruminska']
__email__ = ['karolamik@fizyka.umk.pl', 'jamesmkrieger@gmail.com']


import numpy as np
from numpy import *
from prody import LOGGER, SETTINGS, PY3K
from prody.atomic import AtomGroup, Atom, Atomic, Selection, Select
from prody.atomic import flags, sliceAtomicData
from prody.utilities import importLA, checkCoords, showFigure, getCoords
from prody.measure import calcDistance, calcAngle, calcCenter
from prody.measure.contacts import findNeighbors
from prody.proteins import writePDB, parsePDB
from collections import Counter

from prody.trajectory import TrajBase, Trajectory, Frame
from prody.ensemble import Ensemble

import multiprocessing as mp
from .fixer import *
from .compare import *
from prody.measure import calcTransformation, calcDistance, calcRMSD, superpose


__all__ = ['calcHydrogenBonds', 'calcChHydrogenBonds', 'calcSaltBridges',
           'calcRepulsiveIonicBonding', 'calcPiStacking', 'calcPiCation',
           'calcHydrophobic', 'calcDisulfideBonds', 'calcMetalInteractions',
           'calcHydrogenBondsTrajectory', 'calcSaltBridgesTrajectory',
           'calcRepulsiveIonicBondingTrajectory', 'calcPiStackingTrajectory', 
           'calcPiCationTrajectory', 'calcHydrophobicTrajectory', 'calcDisulfideBondsTrajectory',
           'calcProteinInteractions', 'calcStatisticsInteractions', 'calcDistribution',
           'calcSASA', 'calcVolume','compareInteractions', 'showInteractionsGraph',
           'showInteractionsHist', 'calcLigandInteractions', 'listLigandInteractions', 
           'showProteinInteractions_VMD', 'showLigandInteraction_VMD', 
           'calcHydrophobicOverlapingAreas',
           'Interactions', 'InteractionsTrajectory', 'LigandInteractionsTrajectory',
           'calcSminaBindingAffinity', 'calcSminaPerAtomInteractions', 'calcSminaTermValues',
           'showSminaTermValues', 'showPairEnergy', 'checkNonstandardResidues',
           'saveInteractionsAsDummyAtoms', 'createFoldseekAlignment', 'runFoldseek', 'runDali', 
           'runBLAST', 'extractMultiModelPDB', 'calcSignatureInteractions']


def cleanNumbers(listContacts):
    """Provide short list with indices and value of distance."""
    
    shortList = [ [int(str(i[0]).split()[-1].strip(')')), 
                           int(str(i[1]).split()[-1].strip(')')), 
                           str(i[0]).split()[1], 
                           str(i[1]).split()[1], 
                           float(i[2])] for i in listContacts ]    
    
    return shortList


def calcPlane(atoms):
    """Function provide parameters of a plane for aromatic rings (based on 3 points).
    Used in calcPiStacking()"""
    
    coordinates = getCoords(atoms)
    p1, p2, p3 = coordinates[:3] # 3 points will be enough to obtain the plane
    x1, y1, z1 = p1
    x2, y2, z2 = p2
    x3, y3, z3 = p3    
    vec1 = p3 - p1 # These two vectors are in the plane
    vec2 = p2 - p1
    cp = np.cross(vec1, vec2) # the cross product is a vector normal to the plane
    a, b, c = cp
    d = np.dot(cp, p3) # This evaluates a * x3 + b * y3 + c * z3 which equals d
    
    return a,b,c,d


def calcAngleBetweenPlanes(a1, b1, c1, a2, b2, c2):  
    """Find angle between two planes."""
    import math 
          
    d = ( a1 * a2 + b1 * b2 + c1 * c2 ) 
    eq1 = math.sqrt( a1 * a1 + b1 * b1 + c1 * c1) 
    eq2 = math.sqrt( a2 * a2 + b2 * b2 + c2 * c2) 
    d = d / (eq1 * eq2) 
    AngleBetweenPlanes = math.degrees(math.acos(d)) 
    
    return AngleBetweenPlanes
    
    
def removeDuplicates(list_of_interactions):
    """Remove duplicates from interactions."""
    ls=[]
    newList = []
    for no, i in enumerate(list_of_interactions):
       i = sorted(list(array(i).astype(str)))
       if i not in ls:
           ls.append(i)
           newList.append(list_of_interactions[no])
    return newList


def get_permutation_from_dic(dictionary, key):
    """Check permutations of residue pairs in a dictionary
    format: key=('VAL8', 'LEU89')
    ('VAL8', 'LEU89') and ('LEU89', 'VAL8') will be check and corresponding
    value will be returned."""
    
    if key in dictionary:
        return dictionary[key]

    reversed_key = tuple(reversed(key))
    if reversed_key in dictionary:
        return dictionary[reversed_key]

    return 0


def filterInteractions(list_of_interactions, atoms, **kwargs):
    """Return interactions based on *selection* and *selection2*."""
    
    if 'selection1' in kwargs:
        kwargs['selection'] = kwargs['selection1']

    if 'selection' in kwargs:
        selection = atoms.select(kwargs['selection'])
        if selection is None:
            LOGGER.warn('selection did not work, so no filtering is performed')
            return list_of_interactions

        ch1 = selection.getChids()
        x1 = selection.getResnames()
        y1 = selection.getResnums()
        listOfselection = np.unique(list(map(lambda x1, y1, ch1: (ch1, x1 + str(y1)),
                                             x1, y1, ch1)),
                                    axis=0)
        listOfselection = [list(i) for i in listOfselection] # needed for in check to work

        if 'selection2' in kwargs:
            selection2 = atoms.select(kwargs['selection2'])
            if selection2 is None:
                LOGGER.warn('selection2 did not work, so no filtering is performed')
                return list_of_interactions
            
            ch2 = selection2.getChids()
            x2 = selection2.getResnames()
            y2 = selection2.getResnums()
            listOfselection2 = np.unique(list(map(lambda x2, y2, ch2: (ch2, x2 + str(y2)),
                                                  x2, y2, ch2)),
                                         axis=0)
            listOfselection2 = [list(i) for i in listOfselection2] # needed for in check to work

            final = [i for i in list_of_interactions if (([i[2], i[0]] in listOfselection)
                                                         and ([i[5], i[3]] in listOfselection2)
                                                         or ([i[2], i[0]] in listOfselection2)
                                                         and ([i[5], i[3]] in listOfselection))]
        else:
            final = [i for i in list_of_interactions
                     if (([i[2], i[0]] in listOfselection)
                         or ([i[5], i[3]] in listOfselection))]

    elif 'selection2' in kwargs:
        LOGGER.warn('selection2 by itself is ignored')
        final = list_of_interactions
    else:
        final = list_of_interactions
    return final


def get_energy(pair, source):
    """Return energies based on the pairs of interacting residues (without distance criteria)
    Taking information from tabulated_energies.txt file"""

    import numpy as np
    import importlib.resources as pkg_resources    
    
    aa_correction = {
        # Histidine (His)
        'HSD': 'HIS',   # NAMD, protonated at ND1 (HID in AMBER)
        'HSE': 'HIS',   # NAMD, protonated at NE2 (HIE in AMBER)
        'HSP': 'HIS',   # NAMD, doubly protonated (HIP in AMBER)
        'HID': 'HIS',   # AMBER name, protonated at ND1
        'HIE': 'HIS',   # AMBER name, protonated at NE2
        'HIP': 'HIS',   # AMBER name, doubly protonated
        'HISD': 'HIS',  # GROMACS: protonated at ND1
        'HISE': 'HIS',  # GROMACS: protonated at NE2
        'HISP': 'HIS',  # GROMACS: doubly protonated

        # Cysteine (Cys)
        'CYX': 'CYS',   # Cystine (disulfide bridge)
        'CYM': 'CYS',   # Deprotonated cysteine, anion

        # Aspartic acid (Asp)
        'ASH': 'ASP',   # Protonated Asp
        'ASPP': 'ASP',

        # Glutamic acid (Glu)
        'GLH': 'GLU',   # Protonated Glu
        'GLUP': 'GLU',  # Protonated Glu

        # Lysine (Lys)
        'LYN': 'LYS',   # Deprotonated lysine (neutral)

        # Arginine (Arg)
        'ARN': 'ARG',   # Deprotonated arginine (rare, GROMACS)

        # Tyrosine (Tyr)
        'TYM': 'TYR',   # Deprotonated tyrosine (GROMACS)

        # Serine (Ser)
        'SEP': 'SER',   # Phosphorylated serine (GROMACS/AMBER)

        # Threonine (Thr)
        'TPO': 'THR',   # Phosphorylated threonine (GROMACS/AMBER)

        # Tyrosine (Tyr)
        'PTR': 'TYR',   # Phosphorylated tyrosine (GROMACS/AMBER)

        # Non-standard names for aspartic and glutamic acids in low pH environments
        'ASH': 'ASP',   # Protonated Asp
        'GLH': 'GLU',   # Protonated Glu
    }
    
    pair = [aa_correction.get(aa, aa) for aa in pair]    
    
    if PY3K:
        with pkg_resources.path('prody.proteins', 'tabulated_energies.txt') as file_path:
            with open(file_path) as f:
                data = np.loadtxt(f, dtype=str)
    else:
        file_path = pkg_resources.resource_filename('prody.proteins', 'tabulated_energies.txt')
        with open(file_path) as f:
            data = np.loadtxt(f, dtype=str)
    
    sources = ["IB_nosolv", "IB_solv", "CS"]
    aa_pairs = []
    
    for row in data:
        aa_pairs.append(row[0]+row[1])
    
    lookup = pair[0]+pair[1]
    
    try:
        data_results = data[np.nonzero(np.array(aa_pairs)==lookup)[0]][0][2:][sources.index(source)]
    except TypeError:
        raise TypeError('Please replace non-standard names of residues with standard names.')

    return data_results


[docs]def checkNonstandardResidues(atoms): """Check whether the atomic structure contains non-standard residues and inform to replace the name to the standard one so that non-standard residues are treated in a correct way while computing interactions. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') amino_acids = ["ALA", "ARG", "ASN", "ASP", "CYS", "GLU", "GLN", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "PHE", "PRO", "SER", "THR", "TRP", "TYR", "VAL"] aa_list = atoms.select('name CA').getResnames() aa_list_nr = atoms.select('name CA').getResnums() nonstandard = [] for nr_i,i in enumerate(aa_list): if i not in amino_acids: nonstandard.append(aa_list[nr_i] + str(aa_list_nr[nr_i])) if len(nonstandard) > 0: LOGGER.info('There are several non-standard residues in the structure.') LOGGER.info('Replace the non-standard name in the PDB file with the equivalent name from the standard one if you want to include them in the interactions.') LOGGER.info("Residues: {0}.".format(' '.join(nonstandard))) return True return False
[docs]def showPairEnergy(data, **kwargs): """Return energies when a list of interactions is given. Energies will be added to each pair of residues at the last position in the list. Energy is based on the residue types and not on the distances. The unit of energy is kcal/mol. The energies defined as 'IB_nosolv' (non-solvent-mediated) and 'IB_solv' (solvent-mediated) are taken from [OK98]_ and 'CS' from InSty paper (under preparation). Protonation of residues is not distinguished. The protonation of residues is not distinguished. 'IB_solv' and 'IB_nosolv' have RT units and 'CS' has units of kcal/mol. Known residues such as HSD, HSE, HIE, and HID (used in MD simulations) are treated as HIS. :arg data: list with interactions from calcHydrogenBonds() or other types :type data: list :arg energy_list_type: name of the list with energies default is 'IB_solv' :type energy_list_type: 'IB_nosolv', 'IB_solv', 'CS' .. [OK98] Keskin O., Bahar I., Badretdinov A.Y., Ptitsyn O.B., Jernigan R.L., Empirical solvet-mediated potentials hold for both intra-molecular and inter-molecular inter-residues interactions, *Protein Science* **1998** 7: 2578–2586. """ if not isinstance(data, list): raise TypeError('list_of_interactions must be a list of interactions.') energy_list_type = kwargs.pop('energy_list_type', 'IB_solv') for i in data: energy = get_energy([i[0][:3], i[3][:3]], energy_list_type) i.append(float(energy)) return data
# SignatureInteractions supporting functions def remove_empty_strings(row): """Remove empty strings from a list.""" return [elem for elem in row if elem != ''] def log_message(message, level="INFO"): """Log a message with a specified log level.""" LOGGER.info("[{}] {}".format(level, message)) def is_module_installed(module_name): """Check if a Python module is installed.""" import importlib.util spec = importlib.util.find_spec(module_name) return spec is not None def is_command_installed(command): """Check if a command-line tool is installed.""" import shutil return shutil.which(command) is not None def load_residues_from_pdb(pdb_file): """Extract residue numbers and their corresponding one-letter amino acid codes from a PDB file.""" from prody.atomic.atomic import AAMAP structure = parsePDB(pdb_file) residues = structure.iterResidues() residue_dict = {} for res in residues: resnum = res.getResnum() resname = res.getResname() # Three-letter amino acid code try: one_letter_code = AAMAP[resname] residue_dict[resnum] = one_letter_code except KeyError: log_message("Unknown residue: {} at position {}".format(resname, resnum), "WARNING") return residue_dict def append_residue_code(residue_num, residue_dict): """Return a string with one-letter amino acid code and residue number.""" aa_code = residue_dict.get(residue_num, "X") # Use "X" for unknown residues return "{}{}".format(aa_code, residue_num) def process_data(mapping_file, pdb_folder, interaction_func, bond_type, files_for_analysis): """Process the mapping file and the PDB folder to compute interaction counts and percentages.""" log_message("Loading mapping file: {}".format(mapping_file)) # Load and clean the mapping file try: mapping = np.loadtxt(mapping_file, delimiter=' ', dtype=str) except Exception as e: log_message("Error loading mapping file: {}".format(e), "ERROR") return None mapping = np.where(mapping == '-', np.nan, mapping) filtered_mapping = np.array([remove_empty_strings(row) for row in mapping]) mapping_num = filtered_mapping.astype(float) # Load the one-letter amino acid codes from model1.pdb import os pdb_model_path = os.path.join(pdb_folder, 'model1.pdb') residue_dict = load_residues_from_pdb(pdb_model_path) log_message("Processing PDB files in folder: {}".format(pdb_folder)) tar_bond_ind = [] processed_files = 0 # To track the number of files successfully processed fixed_files = [] # Store paths of fixed files to remove at the end for i, files in enumerate(files_for_analysis): log_message("Processing file {}: {}".format(i + 1, files)) try: coords = parsePDB(files) atoms = coords.select('protein') bonds = interaction_func(atoms) saveInteractionsAsDummyAtoms(atoms, bonds, filename=files.rstrip(files.split('/')[-1])+'INT_'+bond_type+'_'+files.split('/')[-1]) except Exception as e: log_message("Error processing PDB file {}: {}".format(files, e), "ERROR") continue # If no bonds were found, skip this file if len(bonds) == 0: log_message("No {} found in file {}, skipping.".format(bond_type, files), "WARNING") continue processed_files += 1 # Increment successfully processed files fixed_files.append(files) if processed_files == 1: # First valid file with bonds determines target indices for entries in bonds: ent = list(np.sort((int(entries[0][3:]), int(entries[3][3:])))) # Ensure integers tar_bond_ind.append(ent) tar_bond_ind = np.unique(np.array(tar_bond_ind), axis=0).astype(int) count = np.zeros(tar_bond_ind.shape[0], dtype=int) bond_ind = [] for entries in bonds: ent = list(np.sort((int(entries[0][3:]), int(entries[3][3:])))) # Ensure integers bond_ind.append(ent) bond_ind = np.unique(np.array(bond_ind), axis=0) # Ensure bond_ind is a 2D array if bond_ind.ndim == 1: bond_ind = bond_ind.reshape(-1, 2) # Reshape to (n, 2) if it's 1D for j, pairs in enumerate(tar_bond_ind): ind1_matches = np.where(mapping_num[0] == pairs[0])[0] ind2_matches = np.where(mapping_num[0] == pairs[1])[0] if ind1_matches.size > 0 and ind2_matches.size > 0: if processed_files - 1 < mapping_num.shape[0]: ind1 = mapping_num[processed_files - 1, ind1_matches[0]] ind2 = mapping_num[processed_files - 1, ind2_matches[0]] if not (np.isnan(ind1) or np.isnan(ind2)): index = np.where(np.logical_and(bond_ind[:, 0] == int(ind1), bond_ind[:, 1] == int(ind2)))[0] if index.size != 0: count[j] += 1 else: log_message("Skipping file {} due to index out of bounds error".format(files), "WARNING") else: log_message("No matching indices found for {} in {}".format(pairs, files), "WARNING") # If no files were successfully processed or no bonds were found if processed_files == 0 or len(tar_bond_ind) == 0: log_message("No valid {} entries found across all PDB files.".format(bond_type), "ERROR") return None count_reshaped = count.reshape(-1, 1) count_normalized = (count / processed_files * 100).reshape(-1, 1) # Modify tar_bond_ind to append the amino acid code before residue index tar_bond_with_aa = [] for bond in tar_bond_ind: res1 = append_residue_code(bond[0], residue_dict) # Append AA code for Res1 res2 = append_residue_code(bond[1], residue_dict) # Append AA code for Res2 tar_bond_with_aa.append([res1, res2]) tar_bond_with_aa = np.array(tar_bond_with_aa) # Combine tar_bond_with_aa with count and percentage output_data = np.hstack((tar_bond_with_aa, count_reshaped, count_normalized)) log_message("Finished processing {} PDB files.".format(processed_files)) output_filename = '{}_consensus.txt'.format(bond_type) # Save the result with amino acid codes and numeric values np.savetxt(output_filename, output_data, fmt='%s %s %s %s', delimiter=' ', header='Res1 Res2 Count Percentage', comments='') return output_data, fixed_files # Return fixed_files to remove later def plot_barh(result, bond_type, **kwargs): """Plot horizontal bar plots of percentages of interactions, splitting the data into fixed-sized plots. :arg n_per_plot: The number of results per one plot Default is 20 if set to None :type n_per_plot: int :arg min_height: Size of the bar plot Default is 8 :type min_height: int """ import matplotlib.pylab as plt plt.rcParams.update({'font.size': 20}) n_per_plot = kwargs.pop('n_per_plot', None) min_height = kwargs.pop('min_height', 8) if n_per_plot is None: n_per_plot = 20 # Error handling if result is None or empty if result is None or len(result) == 0: log_message("Skipping plot for {} due to insufficient data.".format(bond_type), "ERROR") return num_entries = result.shape[0] num_plots = (num_entries + n_per_plot - 1) // n_per_plot # Number of plots required for plot_idx in range(num_plots): # Slice the data for the current plot (take the next 'n_per_plot' entries) start_idx = plot_idx * n_per_plot end_idx = min((plot_idx + 1) * n_per_plot, num_entries) result_chunk = result[start_idx:end_idx] log_message("Plotting entries {} to {} for {}.".format(start_idx + 1, end_idx, bond_type)) # Use residue numbers for y-axis labels y_labels = ["{}-{}".format(str(row[0]), str(row[1])) for row in result_chunk] percentage_values = result_chunk[:, 3].astype('float') norm = plt.Normalize(vmin=0, vmax=100) cmap = plt.cm.get_cmap('coolwarm') # Set the figure height with a minimum height of `min_height` for small datasets fig_height = max(min_height, len(result_chunk) * 0.4) plt.figure(figsize=(18, fig_height)) bars = plt.barh(y_labels, percentage_values, color=cmap(norm(percentage_values))) sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array([]) # Adjust color bar height to match the number of entries plt.colorbar(sm, label='Percentage', fraction=0.02, pad=0.04) plt.ylim(-1, result_chunk.shape[0]) plt.ylabel('{} Pairs of Residue Numbers'.format(bond_type)) plt.xlabel('Percentage') plt.title('Persistence of {} (entries {}-{})'.format(bond_type, start_idx + 1, end_idx)) # Save each plot with an incremented filename for multiple plots output_plot_file = '{}_plot_part{}.png'.format(bond_type, plot_idx + 1) log_message("Saving plot to: {}".format(output_plot_file)) plt.savefig(output_plot_file) plt.close() log_message("Plot saved successfully.")
[docs]def calcHydrophobicOverlapingAreas(atoms, **kwargs): """Provide information about hydrophobic contacts between pairs of residues based on the regsurf program. To use this function compiled hpb.so is needed. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg selection: selection string of hydrophobic residues :type selection: str :arg hpb_cutoff: cutoff for hydrophobic overlapping area values default is 0.0 :type hpb_cutoff: float, int :arg cumulative_values: sum of results for pairs of residues or for single residues without distinguishing pairs, default is None :type cumulative_values: 'pairs' or 'single_residues' """ imported_hpb = False try: import prody.proteins.hpb as hpb imported_hpb = True except ImportError: try: import hpb imported_hpb = True except ImportError: raise ImportError('Please provide hpb.so file.') if imported_hpb: selection = kwargs.pop('selection', 'protein and noh') hpb_cutoff = kwargs.pop('hpb_cutoff', 0.0) cumulative_values = kwargs.pop('cumulative_values', None) sele = atoms.select(selection) lB = sele.getCoords().tolist() x = sele.getResnames() y = sele.getResnums() z = sele.getNames() w = sele.getIndices() ch = sele.getChids() lA = [ [x[i] + str(y[i]), z[i] +'_'+ str(w[i]), ch[i]] for i in range(len(x))] output = hpb.hpb((lB,lA)) LOGGER.info("Hydrophobic Overlapping Areas are computed.") output_final = [i for i in output if i[-1] >= hpb_cutoff] if cumulative_values == None: return output_final if cumulative_values == 'pairs': sums = {} for item in output_final: k = (item[0]+item[2], item[3]+item[5]) v = item[-1] if k in sums: sums[k] += v else: sums[k] = v return sums if cumulative_values == 'single_residues': sums = {} for j in output_final: k = j[0]+j[2] w = j[-1] sums[k] = sums.get(k, 0) + w return sums
[docs]def calcSASA(atoms, **kwargs): """Provide information about solvent accessible surface area (SASA) based on the sasa program. To use this function compiled hpb.so is needed. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg selection: selection string Default all the protein structure is used :type selection: str :arg sasa_cutoff: cutoff for SASA values Default is 0.0 :type sasa_cutoff: float, int :arg resnames: residues name included Default is False :type resnames: bool """ imported_hpb = False try: import prody.proteins.hpb as hpb imported_hpb = True except ImportError: try: import hpb imported_hpb = True except ImportError: raise ImportError('Please provide hpb.so file.') if imported_hpb: selection = kwargs.pop('selection', 'protein and noh') resnames = kwargs.pop('resnames', False) sasa_cutoff = kwargs.pop('sasa_cutoff', 0.0) sele = atoms.select(selection) lB = sele.getCoords().tolist() x = sele.getResnames() y = sele.getResnums() z = sele.getNames() w = sele.getIndices() ch = sele.getChids() lA = [ [x[i] + str(y[i]), z[i] +'_'+ str(w[i]), ch[i]] for i in range(len(x))] output = hpb.sasa((lB,lA)) LOGGER.info("Solvent Accessible Surface Area (SASA) is computed.") output_final = [i for i in output if i[-1] >= sasa_cutoff] if resnames == True: return output_final else: return [ float(i[-1]) for i in output_final ]
[docs]def calcVolume(atoms, **kwargs): """Provide information about volume for each residue/molecule/chain or other selection". To use this function compiled hpb.so is needed. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg selection: selection string Default all the protein structure is used :type selection: str :arg volume_cutoff: cutoff for volume Default is 0.0 to include all the results :type sasa_volume: float, int :arg split_residues: it will provide values for each residue Default is False :type split_residues: bool :arg resnames: residues name included Default is False True - will give residue names and values for each residue False - will give only the values for each residues :type resnames: bool """ imported_hpb = False try: import prody.proteins.hpb as hpb imported_hpb = True except ImportError: try: import hpb imported_hpb = True except ImportError: raise ImportError('Please provide hpb.so file.') if imported_hpb: selection = kwargs.pop('selection', 'protein and noh') resnames = kwargs.pop('resnames', False) volume_cutoff = kwargs.pop('volume_cutoff', 0.0) split_residues = kwargs.pop('split_residues', False) sele = atoms.select(selection) lB = sele.getCoords().tolist() x = sele.getResnames() y = sele.getResnums() z = sele.getNames() w = sele.getIndices() ch = sele.getChids() lA = [ [x[i] + str(y[i]), z[i] +'_'+ str(w[i]), ch[i]] for i in range(len(x))] output = hpb.volume((lB,lA)) LOGGER.info("Volume is computed.") output_final = [i for i in output if i[-1] >= volume_cutoff] if resnames == True: return output_final if split_residues == True and resnames == False: return [ float(i[-1]) for i in output_final ] else: return sum( [float(i[-1]) for i in output_final] )
[docs]def calcHydrogenBonds(atoms, **kwargs): """Compute hydrogen bonds for proteins and other molecules. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distDA: non-zero value, maximal distance between donor and acceptor. default is 3.5 distA also works :type distDA: int, float :arg angleDHA: non-zero value, maximal (180 - D-H-A angle) (donor, hydrogen, acceptor). default is 40. angle and angleDA also work :type angleDHA: int, float :arg seq_cutoff_HB: non-zero value, interactions will be found between atoms with index differences that are higher than seq_cutoff_HB. default is 25 atoms. seq_cutoff also works :type seq_cutoff_HB: int :arg donors: which atoms to count as donors default is ['N', 'O', 'S', 'F'] :type donors: list :arg acceptors: which atoms to count as acceptors default is ['N', 'O', 'S', 'F'] :type acceptors: list :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' Structure should contain hydrogens. If not they can be added using addMissingAtoms(pdb_name) function available in ProDy after Openbabel installation. `conda install -c conda-forge openbabel` Note that the angle which it is considering is 180-defined angle D-H-A (in a good agreement with VMD) Results can be displayed in VMD by using showVMDinteraction() """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') if atoms.hydrogen is None: raise ValueError('atoms should have hydrogens to calculate hydrogen bonds. ' 'Use addMissingAtoms to add hydrogens') distDA = kwargs.pop('distDA', 3.5) distA = kwargs.pop('distA', distDA) angleDHA = kwargs.pop('angleDA', 40) angleDHA = kwargs.pop('angleDHA', angleDHA) angle = kwargs.pop('angle', angleDHA) seq_cutoff_HB = kwargs.pop('seq_cutoff_HB', 25) seq_cutoff = kwargs.pop('seq_cutoff', seq_cutoff_HB) donors = kwargs.get('donors', ['N', 'O', 'S', 'F']) acceptors = kwargs.get('acceptors', ['N', 'O', 'S', 'F']) if atoms.hydrogen == None or atoms.hydrogen.numAtoms() < 10: LOGGER.info("Provide structure with hydrogens or install Openbabel to add missing hydrogens using addMissingAtoms(pdb_name) first.") contacts = findNeighbors(atoms.heavy, distA) short_contacts = cleanNumbers(contacts) pairList = [] # list with Donor-Hydrogen-Acceptor(indices)-distance-Angle LOGGER.info('Calculating hydrogen bonds.') hydrogens = atoms.hydrogen for nr_i,i in enumerate(short_contacts): # Removing those close contacts which are between neighbour atoms if i[1] - seq_cutoff < i[0] < i[1] + seq_cutoff: continue if (i[2][0] in donors and i[3][0] in acceptors) or (i[2][0] in acceptors and i[3][0] in donors): # First letter is checked listOfHydrogens1 = cleanNumbers(findNeighbors(hydrogens, 1.4, atoms.select('index '+str(i[0])))) listOfHydrogens2 = cleanNumbers(findNeighbors(hydrogens, 1.4, atoms.select('index '+str(i[1])))) AtomsForAngle = ['D','H','A', 'distance','angle'] if not listOfHydrogens1: for j in listOfHydrogens2: AtomsForAngle = [j[1], j[0], i[0], i[-1], calcAngle(atoms.select('index '+str(j[1])), atoms.select('index '+str(j[0])), atoms.select('index '+str(i[0])))[0]] pairList.append(AtomsForAngle) elif not listOfHydrogens2: for jj in listOfHydrogens1: AtomsForAngle = [jj[1], jj[0], i[1], i[-1], calcAngle(atoms.select('index '+str(jj[1])), atoms.select('index '+str(jj[0])), atoms.select('index '+str(i[1])))[0]] pairList.append(AtomsForAngle) else: for j in listOfHydrogens2: AtomsForAngle = [j[1], j[0], i[0], i[-1], calcAngle(atoms.select('index '+str(j[1])), atoms.select('index '+str(j[0])), atoms.select('index '+str(i[0])))[0]] pairList.append(AtomsForAngle) for jj in listOfHydrogens1: AtomsForAngle = [jj[1], jj[0], i[1], i[-1], calcAngle(atoms.select('index '+str(jj[1])), atoms.select('index '+str(jj[0])), atoms.select('index '+str(i[1])))[0]] pairList.append(AtomsForAngle) HBs_list = [] ag = atoms.getAtomGroup() resnames = ag.getResnames() resnums = ag.getResnums() names = ag.getNames() chids = ag.getChids() for k in pairList: if 180-angle < float(k[-1]) < 180 and float(k[-2]) < distA: aa_donor = resnames[k[0]]+str(resnums[k[0]]) aa_donor_atom = names[k[0]]+'_'+str(k[0]) aa_donor_chain = chids[k[0]] aa_acceptor = resnames[k[2]]+str(resnums[k[2]]) aa_acceptor_atom = names[k[2]]+'_'+str(k[2]) aa_acceptor_chain = chids[k[2]] HBs_list.append([str(aa_donor), str(aa_donor_atom), str(aa_donor_chain), str(aa_acceptor), str(aa_acceptor_atom), str(aa_acceptor_chain), np.round(float(k[-2]),4), np.round(180.0-float(k[-1]),4)]) HBs_list = sorted(HBs_list, key=lambda x : x[-2]) HBs_list_final = removeDuplicates(HBs_list) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} HBs_list_final2 = filterInteractions(HBs_list_final, atoms, **sel_kwargs) LOGGER.info(("%26s <---> %30s%12s%7s" % ('DONOR (res chid atom)','ACCEPTOR (res chid atom)','Distance','Angle'))) for kk in HBs_list_final2: LOGGER.info("%10s%5s%14s <---> %10s%5s%14s%8.1f%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6], kk[7])) LOGGER.info("Number of detected hydrogen bonds: {0}.".format(len(HBs_list_final2))) return HBs_list_final2
[docs]def calcChHydrogenBonds(atoms, **kwargs): """Finds hydrogen bonds between different chains. See more details in calcHydrogenBonds(). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distA: non-zero value, maximal distance between donor and acceptor. default is 3.5 :type distA: int, float :arg angle: non-zero value, D-H-A angle (donor, hydrogen, acceptor). default is 40. :type angle: int, float :arg seq_cutoff: non-zero value, interactions will be found between atoms with index differences that are higher than seq_cutoff. default is 25 atoms. :type seq_cutoff: int Structure should contain hydrogens. If not they can be added using addMissingAtoms(pdb_name) function available in ProDy after Openbabel installation. `conda install -c conda-forge openbabel` Note that the angle which it is considering is 180-defined angle D-H-A (in a good agreement with VMD) Results can be displayed in VMD. """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') distA = kwargs.pop('distA', 3.5) angle = kwargs.pop('angle', 40) seq_cutoff = kwargs.pop('seq_cutoff', 25) if len(np.unique(atoms.getChids())) > 1: HBS_calculations = calcHydrogenBonds(atoms, distA=distA, angle=angle, seq_cutoff=seq_cutoff) ChainsHBs = [ i for i in HBS_calculations if str(i[2]) != str(i[5]) ] if not ChainsHBs: ligand_sel = atoms.select('all not protein and not ion') if ligand_sel: ligand_name = list(set(ligand_sel.getResnames()))[0] ChainsHBs = [ ii for ii in HBS_calculations if ii[0][:3] == ligand_name or ii[3][:3] == ligand_name ] return ChainsHBs
[docs]def calcSaltBridges(atoms, **kwargs): """Finds salt bridges in protein structure. Histidines are considered as charge residues. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distSB: non-zero value, maximal distance between center of masses of N and O atoms of negatively and positevely charged residues. default is 5. distA also works :type distSB: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' Results can be displayed in VMD.""" try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') distSB = kwargs.pop('distSB', 5.) distA = kwargs.pop('distA', distSB) atoms_KRED = atoms.select('protein and ((resname ASP GLU LYS ARG and not backbone and not name OXT NE "C.*" and noh) or (resname HIS HSE HSD HSP and name NE2))') if atoms_KRED is None: LOGGER.warn('There are no side chain heavy atoms for residues K, R, E, D and H, so not salt bridges are calculated') return [] charged_residues = list(set(zip(atoms_KRED.getResnums(), atoms_KRED.getChids()))) LOGGER.info('Calculating salt bridges.') SaltBridges_list = [] for i in charged_residues: sele1 = atoms_KRED.select('resid '+str(i[0])+' and chain '+i[1]) try: sele1_center = calcCenter(sele1.getCoords()) sele2 = atoms_KRED.select('same residue as exwithin '+str(distA)+' of center', center=sele1_center) except: sele1_center = sele1.getCoords() sele2 = atoms_KRED.select('same residue as exwithin '+str(distA)+' of center', center=sele1.getCoords()) if sele1 != None and sele2 != None: for ii in np.unique(sele2.getResnums()): sele2_single = sele2.select('resid '+str(ii)) try: distance = calcDistance(sele1_center,calcCenter(sele2_single.getCoords())) except: distance = calcDistance(sele1_center,sele2_single.getCoords()) if distance < distA and sele1.getNames()[0][0] != sele2_single.getNames()[0][0]: SaltBridges_list.append([sele1.getResnames()[0]+str(sele1.getResnums()[0]), sele1.getNames()[0]+'_'+'_'.join(map(str,sele1.getIndices())), sele1.getChids()[0], sele2_single.getResnames()[0]+str(sele2_single.getResnums()[0]), sele2_single.getNames()[0]+'_'+'_'.join(map(str,sele2_single.getIndices())), sele2_single.getChids()[0], round(distance,4)]) SaltBridges_list = sorted(SaltBridges_list, key=lambda x : x[-1]) [ SaltBridges_list.remove(j) for i in SaltBridges_list for j in SaltBridges_list if Counter(i) == Counter(j) ] SaltBridges_list_final = removeDuplicates(SaltBridges_list) selection = kwargs.get('selection', None) selection2 = kwargs.get('selection2', None) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} SaltBridges_list_final2 = filterInteractions(SaltBridges_list_final, atoms, **sel_kwargs) for kk in SaltBridges_list_final2: LOGGER.info("%10s%5s%16s <---> %10s%5s%16s%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6])) LOGGER.info("Number of detected salt bridges: {0}.".format(len(SaltBridges_list_final2))) return SaltBridges_list_final2
[docs]def calcRepulsiveIonicBonding(atoms, **kwargs): """Finds repulsive ionic bonding in protein structure i.e. between positive-positive or negative-negative residues. Histidine is not considered as a charged residue. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distRB: non-zero value, maximal distance between center of masses between N-N or O-O atoms of residues. default is 4.5. distA works too :type distRB: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' Results can be displayed in VMD.""" try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') distRB = kwargs.pop('distRB', 4.5) distA = kwargs.pop('distA', distRB) atoms_KRED = atoms.select('protein and resname ASP GLU LYS ARG and not backbone and not name OXT NE "C.*" and noh') charged_residues = list(set(zip(atoms_KRED.getResnums(), atoms_KRED.getChids()))) LOGGER.info('Calculating repulsive ionic bonding.') RepulsiveIonicBonding_list = [] for i in charged_residues: sele1 = atoms_KRED.select('resid '+str(i[0])+' and chain '+i[1]) try: sele1_center = calcCenter(sele1.getCoords()) sele2 = atoms_KRED.select('same residue as exwithin '+str(distA)+' of center', center=sele1_center) except: sele1_center = sele1.getCoords() sele2 = atoms_KRED.select('same residue as exwithin '+str(distA)+' of center', center=sele1_center) if sele1 != None and sele2 != None: for ii in np.unique(sele2.getResnums()): sele2_single = sele2.select('resid '+str(ii)) try: distance = calcDistance(sele1_center,calcCenter(sele2_single.getCoords())) except: distance = calcDistance(sele1_center,sele2_single.getCoords()) if distance < distA and sele1.getNames()[0][0] == sele2_single.getNames()[0][0] and distance > 0: RepulsiveIonicBonding_list.append([sele1.getResnames()[0]+str(sele1.getResnums()[0]), sele1.getNames()[0]+'_'+'_'.join(map(str,sele1.getIndices())), sele1.getChids()[0], sele2_single.getResnames()[0]+str(sele2_single.getResnums()[0]), sele2_single.getNames()[0]+'_'+'_'.join(map(str,sele2_single.getIndices())), sele2_single.getChids()[0], round(distance,4)]) [ RepulsiveIonicBonding_list.remove(j) for i in RepulsiveIonicBonding_list for j in RepulsiveIonicBonding_list if Counter(i) == Counter(j) ] RepulsiveIonicBonding_list = sorted(RepulsiveIonicBonding_list, key=lambda x : x[-1]) RepulsiveIonicBonding_list_final = removeDuplicates(RepulsiveIonicBonding_list) selection = kwargs.get('selection', None) selection2 = kwargs.get('selection2', None) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} RepulsiveIonicBonding_list_final2 = filterInteractions(RepulsiveIonicBonding_list_final, atoms, **sel_kwargs) for kk in RepulsiveIonicBonding_list_final2: LOGGER.info("%10s%5s%16s <---> %10s%5s%16s%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6])) LOGGER.info("Number of detected Repulsive Ionic Bonding interactions: {0}.".format(len(RepulsiveIonicBonding_list_final2))) return RepulsiveIonicBonding_list_final2
def calcPiStacking_once(sele1, sele2, distA, angle_min, angle_max, data): """Helper function to be used by calcPiStacking""" a1, b1, c1, a2, b2, c2 = calcPlane(sele1)[:3]+calcPlane(sele2)[:3] RingRing_angle = calcAngleBetweenPlanes(a1, b1, c1, a2, b2, c2) # plane is computed based on 3 points of rings RingRing_distance = calcDistance(calcCenter(sele1), calcCenter(sele2)) if RingRing_distance < distA and angle_min < RingRing_angle < angle_max: return data+[round(RingRing_distance,4), round(RingRing_angle,4)]
[docs]def calcPiStacking(atoms, **kwargs): """Finds π–π stacking interactions (between aromatic rings). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distPS: non-zero value, maximal distance between center of masses of residues aromatic rings. default is 5. distA works too :type distPS: int, float :arg angle_min_PS: minimal angle between aromatic rings. default is 0. angle_min works too :type angle_min_PS: int, float :arg angle_max_PS: maximal angle between rings. default is 360. angle_max works too :type angle_max_PS: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg non_standard_PS: dictionary of non-standard residue in the protein structure that need to be included in calculations non_standard works too :type non_standard_PS: dict Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' Results can be displayed in VMD. By default three residues are included TRP, PHE, TYR and HIS. Additional selection can be added: >>> non_standard = {"HSE": "noh and not backbone and not name CB", "HSD": "noh and not backbone and not name CB"} >>> calcPiStacking(atoms, non_standard) Predictions for proteins only. To compute protein-ligand interactions use calcLigandInteractions() or define **kwargs. """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') aromatic_dic = {'TRP':'noh and not backbone and not name CB NE1 CD1 CG', 'PHE':'noh and not backbone and not name CB', 'TYR':'noh and not backbone and not name CB and not name OH', 'HIS':'noh and not backbone and not name CB', 'HSE':'noh and not backbone and not name CB', 'HSD':'noh and not backbone and not name CB'} distPS = kwargs.pop('distPS', 5.0) distA = kwargs.pop('distA', distPS) angle_min_PS = kwargs.pop('angle_min_PS', 0) angle_min = kwargs.pop('angle_min', angle_min_PS) angle_max_PS = kwargs.pop('angle_max_PS', 360) angle_max = kwargs.pop('angle_max', angle_max_PS) non_standard_PS = kwargs.get('non_standard_PS', {}) non_standard = kwargs.get('non_standard', non_standard_PS) for key, value in non_standard.items(): aromatic_dic[key] = value atoms_cylic = atoms.select('resname TRP PHE TYR HIS HSE HSD') if atoms_cylic is None: return [] aromatic_resids = list(set(zip(atoms_cylic.getResnums(), atoms_cylic.getChids()))) LOGGER.info('Calculating Pi stacking interactions.') PiStack_calculations = [] items = [] for i in aromatic_resids: for j in aromatic_resids: if i != j: sele1_full = atoms.select('resid '+str(i[0])+' and chain '+i[1]) sele1_name = sele1_full.getResnames() sele1 = sele1_full.select(aromatic_dic[sele1_name[0]]) sele2_full = atoms.select('resid '+str(j[0])+' and chain '+j[1]) sele2_name = sele2_full.getResnames() sele2 = sele2_full.select(aromatic_dic[sele2_name[0]]) if sele1 != None and sele2 != None: items.append([sele1.getCoords(), sele2.getCoords(), distA, angle_min, angle_max, [str(sele1.getResnames()[0])+str(sele1.getResnums()[0]), '_'.join(map(str,sele1.getIndices())), str(sele1.getChids()[0]), str(sele2.getResnames()[0])+str(sele2.getResnums()[0]), '_'.join(map(str,sele2.getIndices())), str(sele2.getChids()[0])]]) # create a process pool that uses all cpus with mp.Pool() as pool: # call the function for each item in parallel with multiple arguments for result in pool.starmap(calcPiStacking_once, items): if result is not None: PiStack_calculations.append(result) PiStack_calculations = sorted(PiStack_calculations, key=lambda x : x[-2]) PiStack_calculations_final = removeDuplicates(PiStack_calculations) selection = kwargs.get('selection', None) selection2 = kwargs.get('selection2', None) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} PiStack_calculations_final2 = filterInteractions(PiStack_calculations_final, atoms, **sel_kwargs) for kk in PiStack_calculations_final2: LOGGER.info("%10s%8s%32s <---> %10s%8s%32s%8.1f%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6], kk[7])) LOGGER.info("Number of detected Pi stacking interactions: {0}.".format(len(PiStack_calculations_final2))) return PiStack_calculations_final2
[docs]def calcPiCation(atoms, **kwargs): """Finds cation-Pi interaction i.e. between aromatic ring and positively charged residue (ARG and LYS). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distPC: non-zero value, maximal distance between center of masses of aromatic ring and positively charge group. default is 5. distA works too :type distPC: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg non_standard_PC: dictionary of non-standard residue in the protein structure that need to be included in calculations non_standard also works :type non_standard_PC: dict Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' By default three residues are included TRP, PHE, TYR and HIS. Additional selection can be added: >>> calcPiCation(atoms, 'HSE'='noh and not backbone and not name CB') or >>> non_standard = {"HSE": "noh and not backbone and not name CB", "HSD": "noh and not backbone and not name CB"} >>> calcPiCation(atoms, non_standard) Results can be displayed in VMD. Predictions for proteins only. To compute protein-ligand interactions use calcLigandInteractions() or define **kwargs""" try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') aromatic_dic = {'TRP':'noh and not backbone and not name CB NE1 CD1 CG', 'PHE':'noh and not backbone and not name CB', 'TYR':'noh and not backbone and not name CB and not name OH', 'HIS':'noh and not backbone and not name CB', 'HSE':'noh and not backbone and not name CB', 'HSD':'noh and not backbone and not name CB'} distPC = kwargs.pop('distPC', 5.0) distA = kwargs.pop('distA', distPC) non_standard_PC = kwargs.get('non_standard_PC', {}) non_standard = kwargs.get('non_standard', non_standard_PC) for key, value in non_standard.items(): aromatic_dic[key] = value atoms_cylic = atoms.select('resname TRP PHE TYR HIS HSE HSD') if atoms_cylic is None: return [] aromatic_resids = list(set(zip(atoms_cylic.getResnums(), atoms_cylic.getChids()))) PiCation_calculations = [] LOGGER.info('Calculating cation-Pi interactions.') for i in aromatic_resids: sele1_name = atoms.select('resid '+str(i[0])+' and chain '+i[1]+' and name CA').getResnames() try: sele1 = atoms.select('resid '+str(i[0])+' and chain '+i[1]+' and '+aromatic_dic[sele1_name[0]]) sele2 = atoms.select('(same residue as exwithin '+str(distA)+' of center) and resname ARG LYS and noh and not backbone and not name NE "C.*"', center=calcCenter(sele1.getCoords())) except: raise ValueError("Missing atoms from the side chains of the structure. Use addMissingAtoms.") if sele1 != None and sele2 != None: for ii in np.unique(sele2.getResnums()): sele2_single = sele2.select('resid '+str(ii)) try: RingCation_distance = calcDistance(calcCenter(sele1.getCoords()),calcCenter(sele2_single.getCoords())) except: RingCation_distance = calcDistance(calcCenter(sele1.getCoords()),sele2_single.getCoords()) if RingCation_distance < distA: PiCation_calculations.append([str(sele1_name[0])+str(sele1.getResnums()[0]), '_'.join(map(str,sele1.getIndices())), str(sele1.getChids()[0]), str(sele2_single.getResnames()[0])+str(sele2_single.getResnums()[0]), sele2_single.getNames()[0]+'_'+'_'.join(map(str,sele2_single.getIndices())), str(sele2_single.getChids()[0]), round(RingCation_distance,4)]) PiCation_calculations = sorted(PiCation_calculations, key=lambda x : x[-1]) PiCation_calculations_final = removeDuplicates(PiCation_calculations) selection = kwargs.get('selection', None) selection2 = kwargs.get('selection2', None) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} PiCation_calculations_final2 = filterInteractions(PiCation_calculations_final, atoms, **sel_kwargs) for kk in PiCation_calculations_final2: LOGGER.info("%10s%4s%32s <---> %10s%4s%32s%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6])) LOGGER.info("Number of detected cation-pi interactions: {0}.".format(len(PiCation_calculations_final2))) return PiCation_calculations_final2
[docs]def calcHydrophobic(atoms, **kwargs): """Prediction of hydrophobic interactions between hydrophobic residues (ALA, ILE, LEU, MET, PHE, TRP, VAL, CG of ARG, and CG and CD of LYS). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distHPh: non-zero value, maximal distance between atoms of hydrophobic residues. default is 4.5. distA works too :type distHPh: int, float :arg non_standard_Hph: dictionary of non-standard residue in the protein structure that need to be included in calculations non_standard works too :type non_standard_Hph: dict :arg zerosHPh: zero values of hydrophobic overlapping areas included default is False :type zerosHPh: bool Last value in the output corresponds to the total hydrophobic overlapping area for two residues not only for the atoms that are included in the list. Atoms that which are listed are the closest between two residues and they will be inluded to draw the line in VMD_. Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' Additional selection can be added as shown below (with selection that includes only hydrophobic part): >>> calcHydrophobic(atoms, non_standard_Hph={'XLE'='noh and not backbone', 'XLI'='noh and not backbone'}) Predictions for proteins only. To compute protein-ligand interactions use calcLigandInteractions(). Results can be displayed in VMD by using showVMDinteraction() Note that interactions between aromatic residues are omitted becasue they are provided by calcPiStacking(). """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') distHph = kwargs.pop('distHph', 4.5) distA = kwargs.pop('distA', distHph) zerosHPh = kwargs.pop('zerosHPh', False) # Nonstandard residues: hydrophobic_dic = {'ALA': 'noh and not backbone', 'VAL': 'noh and not (backbone or name CB)', 'ILE': 'noh and not (backbone or name CB)', 'LEU': 'noh and not (backbone or name CB)', 'MET': 'noh and not (backbone or name CB)', 'PHE': 'noh and not (backbone or name CB)', 'TYR': 'noh and not (backbone or name CB)', 'TRP': 'noh and not (backbone or name CB)', 'ARG': 'name CG', 'LYS': 'name CG CD'} non_standard_Hph = kwargs.get('non_standard_Hph', {}) non_standard = kwargs.get('non_standard', non_standard_Hph) for key, value in non_standard.items(): hydrophobic_dic[key] = value Hydrophobic_list = [] # All residues, also non-standard will be included in the selection: residue_list = list(hydrophobic_dic.keys()) atoms_hydrophobic = atoms.select('resname '+' '.join(residue_list)) hydrophobic_resids = list(set(zip(atoms_hydrophobic.getResnums(), atoms_hydrophobic.getChids()))) if atoms.aromatic is None: return [] aromatic_nr = list(set(zip(atoms.aromatic.getResnums(),atoms.aromatic.getChids()))) aromatic = list(set(atoms.aromatic.getResnames())) # Computing hydrophobic overlapping areas for pairs of residues: try: hpb_overlaping_results = calcHydrophobicOverlapingAreas(atoms_hydrophobic, cumulative_values='pairs') except: LOGGER.info('Please provide hpb.so file to obtain additional data.') LOGGER.info('Calculating hydrophobic interactions.') Hydrophobic_calculations = [] for i in hydrophobic_resids: try: sele1_name = atoms.select('resid '+str(i[0])+' and chain '+i[1]+' and name CA').getResnames() sele1 = atoms.select('resid '+str(i[0])+' and '+' chain '+i[1]+' and '+hydrophobic_dic[sele1_name[0]]) sele1_nr = sele1.getResnums()[0] sele2 = atoms.select('(same residue as exwithin '+str(distA)+' of (resid '+str(sele1_nr)+' and chain '+i[1]+' and resname '+sele1_name[0]+ ')) and ('+' or '.join([ '(resname '+item[0]+' and '+item[1]+')' for item in hydrophobic_dic.items() ])+')') except: LOGGER.info("Missing atoms from the side chains of the structure. Use PDBFixer.") sele1 = None sele2 = None if sele2 != None: sele2_nr = list(set(zip(sele2.getResnums(), sele2.getChids()))) if sele1_name[0] in aromatic: # avoid double counting pi stacking and don't include same residue interactions sele2_filter = sele2.select('all and not (resname TYR PHE TRP or resid '+str(i[0])+' and chain '+i[1]+')') if sele2_filter != None: listOfAtomToCompare = cleanNumbers(findNeighbors(sele1, distA, sele2_filter)) elif sele1_name[0] not in aromatic and i in sele2_nr: # don't include same residue interactions but don't worry about double counting pi stacking sele2_filter = sele2.select(sele2.select('all and not (resid '+str(i[0])+' and chain '+i[1]+')')) if sele2_filter != None: listOfAtomToCompare = cleanNumbers(findNeighbors(sele1, distA, sele2_filter)) else: listOfAtomToCompare = cleanNumbers(findNeighbors(sele1, distA, sele2)) if listOfAtomToCompare != []: listOfAtomToCompare = sorted(listOfAtomToCompare, key=lambda x : x[-1]) minDistancePair = listOfAtomToCompare[0] if minDistancePair[-1] < distA: sele1_new = atoms.select('index '+str(minDistancePair[0])+' and name '+str(minDistancePair[2])) sele2_new = atoms.select('index '+str(minDistancePair[1])+' and name '+str(minDistancePair[3])) residue1 = sele1_new.getResnames()[0]+str(sele1_new.getResnums()[0]) residue2 = sele2_new.getResnames()[0]+str(sele2_new.getResnums()[0]) try: Hydrophobic_calculations.append([residue1, minDistancePair[2]+'_'+str(minDistancePair[0]), sele1_new.getChids()[0], residue2, minDistancePair[3]+'_'+str(minDistancePair[1]), sele2_new.getChids()[0], round(minDistancePair[-1],4), round(get_permutation_from_dic(hpb_overlaping_results,(residue1+sele1_new.getChids()[0], residue2+sele2_new.getChids()[0])),4)]) except: Hydrophobic_calculations.append([residue1, minDistancePair[2]+'_'+str(minDistancePair[0]), sele1_new.getChids()[0], residue2, minDistancePair[3]+'_'+str(minDistancePair[1]), sele2_new.getChids()[0], round(minDistancePair[-1],4)]) selection = kwargs.get('selection', None) selection2 = kwargs.get('selection2', None) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} imported_hpb = False try: import prody.proteins.hpb as hpb imported_hpb = True except ImportError: try: import hpb imported_hpb = True except ImportError: LOGGER.info('Please provide hpb.so file.') if imported_hpb: Hydrophobic_calculations = sorted(Hydrophobic_calculations, key=lambda x : x[-2]) Hydrophobic_calculations_final = removeDuplicates(Hydrophobic_calculations) Hydrophobic_calculations_final2 = filterInteractions(Hydrophobic_calculations_final, atoms, **sel_kwargs) if zerosHPh == False: Hydrophobic_calculations_final3 = [ i for i in Hydrophobic_calculations_final2 if i[-1] != 0 ] else: Hydrophobic_calculations_final3 = Hydrophobic_calculations_final2 for kk in Hydrophobic_calculations_final3: LOGGER.info("%10s%5s%14s14s <---> %10s%5s%14s%8.1f%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6], kk[7])) LOGGER.info("Number of detected hydrophobic interactions: {0}.".format(len(Hydrophobic_calculations_final3))) return Hydrophobic_calculations_final3 else: Hydrophobic_calculations = sorted(Hydrophobic_calculations, key=lambda x : x[-1]) Hydrophobic_calculations_final = removeDuplicates(Hydrophobic_calculations) Hydrophobic_calculations_final2 = filterInteractions(Hydrophobic_calculations_final, atoms, **sel_kwargs) for kk in Hydrophobic_calculations_final2: LOGGER.info("%10s%5s%14s <---> %10s%5s%14s%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6])) LOGGER.info("Number of detected hydrophobic interactions: {0}.".format(len(Hydrophobic_calculations_final2))) return Hydrophobic_calculations_final2
[docs]def calcDisulfideBonds(atoms, **kwargs): """Prediction of disulfide bonds. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distDB: non-zero value, maximal distance between atoms of cysteine residues. default is 3. distA works too :type distDB: int, float """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') distDB = kwargs.pop('distDB', 3) distA = kwargs.pop('distA', distDB) from prody.measure import calcDihedral try: atoms_SG = atoms.select('protein and resname CYS and name SG') atoms_SG_res = list(set(zip(atoms_SG.getResnums(), atoms_SG.getChids()))) LOGGER.info('Calculating disulfide bonds.') DisulfideBonds_list = [] for i in atoms_SG_res: CYS_pairs = atoms.select('(same residue as protein within '+str(distA)+' of ('+'resid '+str(i[0])+' and chain '+i[1]+' and name SG)) and (resname CYS and name SG)') if CYS_pairs.numAtoms() > 1: sele1 = CYS_pairs[0] sele2 = CYS_pairs[1] listOfAtomToCompare = cleanNumbers(findNeighbors(sele1, distA, sele2)) if listOfAtomToCompare != []: listOfAtomToCompare = sorted(listOfAtomToCompare, key=lambda x : x[-1]) minDistancePair = listOfAtomToCompare[0] if minDistancePair[-1] < distA: sele1_new = atoms.select('index '+str(minDistancePair[0])+' and name '+str(minDistancePair[2])) sele2_new = atoms.select('index '+str(minDistancePair[1])+' and name '+str(minDistancePair[3])) sele1_CB = atoms.select('resname CYS and name CB and resid '+str(sele1_new.getResnums()[0])+ ' and chain '+str(sele1_new.getChids()[0])) sele2_CB = atoms.select('resname CYS and name CB and resid '+str(sele2_new.getResnums()[0])+ ' and chain '+str(sele2_new.getChids()[0])) diheAng = calcDihedral(sele1_CB, sele1_new, sele2_new, sele2_CB) DisulfideBonds_list.append([sele1_new.getResnames()[0]+str(sele1_new.getResnums()[0]), minDistancePair[2]+'_'+str(minDistancePair[0]), sele1_new.getChids()[0], sele2_new.getResnames()[0]+str(sele2_new.getResnums()[0]), minDistancePair[3]+'_'+str(minDistancePair[1]), sele2_new.getChids()[0], round(minDistancePair[-1],4), round(float(diheAng),4)]) except: atoms_SG = atoms.select('protein and resname CYS') if atoms_SG is None: LOGGER.info('Lack of cysteines in the structure.') DisulfideBonds_list = [] DisulfideBonds_list_final = removeDuplicates(DisulfideBonds_list) sel_kwargs = {k: v for k, v in kwargs.items() if k.startswith('selection')} DisulfideBonds_list_final2 = filterInteractions(DisulfideBonds_list_final, atoms, **sel_kwargs) for kk in DisulfideBonds_list_final2: LOGGER.info("%10s%5s%14s <---> %10s%5s%14s%8.1f%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6], kk[7])) LOGGER.info("Number of detected disulfide bonds: {0}.".format(len(DisulfideBonds_list_final2))) return DisulfideBonds_list_final2
[docs]def calcMetalInteractions(atoms, distA=3.0, extraIons=['FE'], excluded_ions=['SOD', 'CLA']): """Interactions with metal ions (includes water, ligands and other ions). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg distA: non-zero value, maximal distance between ion and residue. default is 3.0 :type distA: int, float :arg extraIons: ions to be included in the analysis. :type extraIons: list :arg excluded_ions: ions which should be excluded from the analysis. :type excluded_ions: list """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') try: atoms_ions = atoms.select('ion and not name '+' '.join(excluded_ions)+' or (name '+' '.join(map(str,extraIons))+')') MetalResList = [] MetalRes_calculations = cleanNumbers(findNeighbors(atoms_ions, distA, atoms.select('all and noh'))) for i in MetalRes_calculations: if i[-1] != 0: MetalResList.append([atoms.getResnames()[i[0]]+str(atoms.getResnums()[i[0]]), i[2], atoms.getChids()[i[0]], atoms.getResnames()[i[1]]+str(atoms.getResnums()[i[1]]), i[3], atoms.getChids()[i[1]], i[-1]]) for kk in MetalResList: LOGGER.info("%10s%5s%14s <---> %10s%5s%14s%8.1f" % (kk[0], kk[2], kk[1], kk[3], kk[5], kk[4], kk[6])) LOGGER.info("Number of detected metal bonds: {0}.".format(len(MetalResList))) return MetalResList except TypeError: raise TypeError('An object should contain ions')
def calcInteractionsMultipleFrames(atoms, interaction_type, trajectory, **kwargs): """Compute selected type interactions for DCD trajectory or multi-model PDB using default parameters or those from kwargs. :arg max_proc: maximum number of processes to use default is half of the number of CPUs :type max_proc: int """ try: coords = getCoords(atoms) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') interactions_all = [] start_frame = kwargs.pop('start_frame', 0) stop_frame = kwargs.pop('stop_frame', -1) max_proc = kwargs.pop('max_proc', mp.cpu_count()//2) interactions_dic = { "HBs": calcHydrogenBonds, "SBs": calcSaltBridges, "RIB": calcRepulsiveIonicBonding, "PiStack": calcPiStacking, "PiCat": calcPiCation, "HPh": calcHydrophobic, "DiB": calcDisulfideBonds } if trajectory is not None: if isinstance(trajectory, Atomic): trajectory = Ensemble(trajectory) if isinstance(trajectory, Trajectory): nfi = trajectory._nfi trajectory.reset() numFrames = trajectory._n_csets if stop_frame == -1: traj = trajectory[start_frame:] else: traj = trajectory[start_frame:stop_frame+1] atoms_copy = atoms.copy() def analyseFrame(j0, frame0, interactions_all): LOGGER.info('Frame: {0}'.format(j0)) atoms_copy.setCoords(frame0.getCoords()) protein = atoms_copy.select('protein') interactions = interactions_dic[interaction_type](protein, **kwargs) interactions_all.append(interactions) if max_proc == 1: interactions_all = [] for j0, frame0 in enumerate(traj, start=start_frame): analyseFrame(j0, frame0, interactions_all) else: with mp.Manager() as manager: interactions_all = manager.list() j0 = start_frame while j0 < traj.numConfs()+start_frame: processes = [] for _ in range(max_proc): frame0 = traj[j0-start_frame] p = mp.Process(target=analyseFrame, args=(j0, frame0, interactions_all)) p.start() processes.append(p) j0 += 1 if j0 >= traj.numConfs()+start_frame: break for p in processes: p.join() interactions_all = interactions_all[:] if isinstance(trajectory, Trajectory): trajectory._nfi = nfi else: if atoms.numCoordsets() > 1: def analyseFrame(i, interactions_all): LOGGER.info('Model: {0}'.format(i+start_frame)) atoms.setACSIndex(i+start_frame) protein = atoms.select('protein') interactions = interactions_dic[interaction_type](protein, **kwargs) interactions_all.append(interactions) if stop_frame == -1: stop_frame = atoms.numCoordsets() if max_proc == 1: interactions_all = [] for i in range(len(atoms.getCoordsets()[start_frame:stop_frame+1])): analyseFrame(i, interactions_all) else: with mp.Manager() as manager: interactions_all = manager.list() i = start_frame while i < len(atoms.getCoordsets()[start_frame:stop_frame+1]): processes = [] for _ in range(max_proc): p = mp.Process(target=analyseFrame, args=(i, interactions_all)) p.start() processes.append(p) i += 1 if i >= len(atoms.getCoordsets()[start_frame:stop_frame]): break for p in processes: p.join() interactions_all = interactions_all[:] else: LOGGER.info('Include trajectory or use multi-model PDB file.') return interactions_all
[docs]def calcProteinInteractions(atoms, **kwargs): """Compute all protein interactions (shown below). (1) Hydrogen bonds (2) Salt Bridges (3) RepulsiveIonicBonding (4) Pi stacking interactions (5) Pi-cation interactions (6) Hydrophobic interactions (7) Disulfide Bonds kwargs can be passed on to the underlying functions as described in their documentation. For example, distDA and angleDHA can be used to control hydrogen bonds, or distA and angle can be used across types. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') LOGGER.info('Calculating interations.') HBs_calculations = calcHydrogenBonds(atoms.protein, **kwargs) #1 in counting SBs_calculations = calcSaltBridges(atoms.protein, **kwargs) #2 SameChargeResidues = calcRepulsiveIonicBonding(atoms.protein, **kwargs) #3 Pi_stacking = calcPiStacking(atoms.protein, **kwargs) #4 Pi_cation = calcPiCation(atoms.protein, **kwargs) #5 Hydroph_calculations = calcHydrophobic(atoms.protein, **kwargs) #6 Disulfide_Bonds = calcDisulfideBonds(atoms.protein, **kwargs) #7 AllInteractions = [HBs_calculations, SBs_calculations, SameChargeResidues, Pi_stacking, Pi_cation, Hydroph_calculations, Disulfide_Bonds] return AllInteractions
[docs]def calcHydrogenBondsTrajectory(atoms, trajectory=None, **kwargs): """Compute hydrogen bonds for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between donor and acceptor. default is 3.5 distDA also works :type distA: int, float :arg angle: non-zero value, maximal (180 - D-H-A angle) (donor, hydrogen, acceptor). default is 40. angleDHA also works :type angle: int, float :arg seq_cutoff: non-zero value, interactions will be found between atoms with index differences that are higher than seq_cutoff. default is 20 atoms. :type seq_cutoff: int :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ return calcInteractionsMultipleFrames(atoms, 'HBs', trajectory, **kwargs)
[docs]def calcSaltBridgesTrajectory(atoms, trajectory=None, **kwargs): """Compute salt bridges for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between center of masses of N and O atoms of negatively and positevely charged residues. default is 5. distSB also works :type distA: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ return calcInteractionsMultipleFrames(atoms, 'SBs', trajectory, **kwargs)
[docs]def calcRepulsiveIonicBondingTrajectory(atoms, trajectory=None, **kwargs): """Compute repulsive ionic bonding for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between center of masses between N-N or O-O atoms of residues. default is 4.5. distRB also works :type distA: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ return calcInteractionsMultipleFrames(atoms, 'RIB', trajectory, **kwargs)
[docs]def calcPiStackingTrajectory(atoms, trajectory=None, **kwargs): """Compute Pi-stacking interactions for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between center of masses of residues aromatic rings. default is 5. distPS also works :type distA: int, float :arg angle_min: minimal angle between aromatic rings. default is 0. :type angle_min: int :arg angle_max: maximal angle between rings. default is 360. :type angle_max: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ return calcInteractionsMultipleFrames(atoms, 'PiStack', trajectory, **kwargs)
[docs]def calcPiCationTrajectory(atoms, trajectory=None, **kwargs): """Compute Pi-cation interactions for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between center of masses of aromatic ring and positively charge group. default is 5. distPC also works :type distA: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ return calcInteractionsMultipleFrames(atoms, 'PiCat', trajectory, **kwargs)
[docs]def calcHydrophobicTrajectory(atoms, trajectory=None, **kwargs): """Compute hydrophobic interactions for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between atoms of hydrophobic residues. default is 4.5. distHPh also works :type distA: int, float :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ return calcInteractionsMultipleFrames(atoms, 'HPh', trajectory, **kwargs)
[docs]def calcDisulfideBondsTrajectory(atoms, trajectory=None, **kwargs): """Compute disulfide bonds for DCD trajectory or multi-model PDB using default parameters. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg distA: non-zero value, maximal distance between atoms of cysteine residues. default is 2.5. distDB also works :type distA: int, float :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int """ return calcInteractionsMultipleFrames(atoms, 'DiB', trajectory, **kwargs)
[docs]def compareInteractions(data1, data2, **kwargs): """Comparison of two outputs from interactions. It will provide information about the disappearance and appearance of some interactions as well as the similarities in the interactions for the same system. Two conformations can be compared. :arg data1: list with interactions from calcHydrogenBonds() or other types :type data1: list :arg data2: list with interactions from calcHydrogenBonds() or other types :type data2: list :arg filename: name of text file in which the comparison between two sets of interactions will be saved type filename: str Example of usage: >>> atoms1 = parsePDB('PDBfile1.pdb').select('protein') >>> atoms2 = parsePDB('PDBfile2.pdb').select('protein') >>> compareInteractions(calcHydrogenBonds(atoms1), calcHydrogenBonds(atoms2)) """ if not isinstance(data1, list): raise TypeError('data1 must be a list of interactions.') if not isinstance(data2, list): raise TypeError('data2 must be a list of interactions.') data1_tuple = [ tuple([i[0]+i[2], i[3]+i[5]]) for i in data1 ] data2_tuple = [ tuple([i[0]+i[2], i[3]+i[5]]) for i in data2 ] diff_21 = set(data2_tuple) - set(data1_tuple) diff_12 = set(data1_tuple) - set(data2_tuple) similar_12 = set(data1_tuple) & set(data2_tuple) LOGGER.info("Which interactions disappeared: {0}".format(len(diff_21))) for j in diff_21: LOGGER.info('{0} <---> {1}'.format(j[0],j[1])) LOGGER.info("\nWhich interactions appeared: {0}".format(len(diff_12))) for j in diff_12: LOGGER.info('{0} <---> {1}'.format(j[0],j[1])) LOGGER.info("Which interactions are the same: {0}".format(len(similar_12))) for j in similar_12: if len(similar_12) != 0: LOGGER.info('{0} <---> {1}'.format(j[0],j[1])) else: LOGGER.info("None") try: if 'filename' in kwargs: with open(kwargs['filename'], 'w') as f: # what disapperaed from initial f.write("Which interactions disappeared:\n") for i in diff_21: f.write(i[0]+'-'+i[1]+'\n') f.write("\nWhich interactions appeared:\n") for i in diff_12: f.write(i[0]+'-'+i[1]+'\n') f.write("\nWhich interactions are the same:\n") for i in similar_12: f.write(i[0]+'-'+i[1]+'\n') f.close() except: pass return diff_21, diff_12, similar_12
[docs]def showInteractionsGraph(statistics, **kwargs): """Return residue-residue interactions as graph/network. :arg statistics: Results obtained from calcStatisticsInteractions analysis :type statistics: list :arg cutoff: Minimal number of counts per residue in the trajectory Default is 0.1. :type cutoff: int, float :arg code: representation of the residues, 3-letter or 1-letter Default is 3-letter :type code: str :arg multiple_chains: display chain name for structure with many chains Default is False :type multiple_chains: bool :arg edge_cmap: color of the residue connection Default is plt.cm.Blues (blue color) :type edge_cmap: str :arg node_size: size of the nodes which describes residues Default is 300 :type node_size: int :arg node_distance: value which will scale residue-residue interactions Default is 5 :type node_distance: int :arg font_size: size of the font Default is 14 :type font_size: int :arg seed: random number which affect the distribution of residues Default is 42 :type seed: int """ import networkx as nx import matplotlib.pyplot as plt amino_acid_colors_dic = { "ALA": "silver", # non-polar "ILE": "silver", # non-polar "LEU": "silver", # non-polar "VAL": "silver", # non-polar "PHE": "silver", # non-polar "MET": "silver", # non-polar "TRP": "silver", # non-polar "GLY": "limegreen", # polar "SER": "limegreen", # polar "THR": "limegreen", # polar "CYS": "limegreen", # polar "TYR": "limegreen", # polar "ASN": "limegreen", # polar "GLN": "limegreen", # polar "HIS": "deepskyblue", # basic "HSE": "deepskyblue", # basic "HSD": "deepskyblue", # basic "LYS": "deepskyblue", # basic "ARG": "deepskyblue", # basic "ASP": "tomato", # acidic "GLU": "tomato", # acidic "PRO": "pink", "A": "silver", # non-polar "I": "silver", # non-polar "L": "silver", # non-polar "V": "silver", # non-polar "F": "silver", # non-polar "M": "silver", # non-polar "W": "silver", # non-polar "G": "limegreen", # polar "S": "limegreen", # polar "T": "limegreen", # polar "C": "limegreen", # polar "Y": "limegreen", # polar "N": "limegreen", # polar "Q": "limegreen", # polar "H": "deepskyblue", # basic "K": "deepskyblue", # basic "R": "deepskyblue", # basic "D": "tomato", # acidic "E": "tomato", # acidic "P": "pink" } aa_dic = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'HSD': 'H','HSE': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} if isinstance(statistics, int) or isinstance(statistics, str) or isinstance(statistics, Atomic): raise TypeError('input data must be a list, use calcStatisticsInteractions to obtain statistics for a particular interaction type') if isinstance(statistics, InteractionsTrajectory) or isinstance(statistics, Interactions): raise TypeError('use calcStatisticsInteractions to obtain statistics for a particular interaction type') else: if len(statistics[0]) != 5: raise TypeError('input data must be a list obtained from calcStatisticsInteractions') code = kwargs.pop('code', None) if code is None: code = '3-letter' elif isinstance(code, str): code = code elif isinstance(code, int): raise TypeError('code must be 3-letter or 1-letter') edge_cmap = kwargs.pop('edge_cmap', plt.cm.Blues) node_size = kwargs.pop('node_size', 300) node_distance = kwargs.pop('node_distance', 5) font_size = kwargs.pop('font_size', 14) seed = kwargs.pop('seed', 42) cutoff = kwargs.pop('cutoff', 0.1) multiple_chains = kwargs.pop('multiple_chains', False) X = [i for i in statistics if i[1] >= cutoff] G = nx.Graph() for row in X: if multiple_chains == False: if code == '1-letter': aa1 = aa_dic[row[0].split('-')[0][:3]] + row[0].split('-')[0][3:-1] aa2 = aa_dic[row[0].split('-')[1][:3]] + row[0].split('-')[1][3:-1] else: aa1 = row[0].split('-')[0][:-1] aa2 = row[0].split('-')[1][:-1] else: if code == '1-letter': aa1 = aa_dic[row[0].split('-')[0][:3]] + row[0].split('-')[0][3:] aa2 = aa_dic[row[0].split('-')[1][:3]] + row[0].split('-')[1][3:] else: aa1 = row[0].split('-')[0] aa2 = row[0].split('-')[1] G.add_node(aa1) G.add_node(aa2) weight = row[1] length = row[2] G.add_edge(aa1, aa2, weight=weight, length=length) try: node_colors = [ amino_acid_colors_dic[i[:3]] for i in G.nodes() ] except: node_colors = [ amino_acid_colors_dic[i[:1]] for i in G.nodes() ] if SETTINGS['auto_show']: plt.figure() pos = nx.spring_layout(G, k=node_distance, seed=seed) edges = G.edges() weights = [G[u][v]['weight'] for u,v in edges] lengths = [G[u][v]['length'] for u,v in edges] show = nx.draw(G, pos, edgelist=edges, edge_color=weights, width=lengths, edge_cmap=edge_cmap, node_color=node_colors, node_size=node_size, font_size=font_size, with_labels=True) if SETTINGS['auto_show']: showFigure() return show
[docs]def showInteractionsHist(statistics, **kwargs): """Return information about residue-residue interactions as a bar plot. :arg statistics: Results obtained from calcStatisticsInteractions analysis :type statistics: list :arg clip: maxmimal number of residue pairs on the bar plot Default is 20 :type clip: int :arg font_size: size of the font Default is 18 :type font_size: int """ if isinstance(statistics, int) or isinstance(statistics, str) or isinstance(statistics, Atomic): raise TypeError('input data must be a list, use calcStatisticsInteractions to obtain statistics for a particular interaction type') if isinstance(statistics, InteractionsTrajectory) or isinstance(statistics, Interactions): raise TypeError('use calcStatisticsInteractions to obtain statistics for a particular interaction type') else: if len(statistics[0]) != 5: raise TypeError('input data must be a list obtained from calcStatisticsInteractions') import matplotlib.pyplot as plt import numpy as np clip = kwargs.pop('clip', 20) font_size = kwargs.pop('font_size', 18) labels = [row[0] for row in statistics] values = [row[2] for row in statistics] std_devs = [row[3] for row in statistics] colors = [row[1] for row in statistics] sorted_indices = np.argsort(colors)[-clip:] labels = [labels[i] for i in sorted_indices] values = [values[i] for i in sorted_indices] std_devs = [std_devs[i] for i in sorted_indices] colors = [colors[i] for i in sorted_indices] norm = plt.Normalize(min(colors), max(colors)) cmap = plt.get_cmap("Blues") num_labels = len(labels) height = max(6, num_labels * 0.4) fig, ax = plt.subplots(figsize=(8, height)) bars = ax.barh(labels, values, xerr=std_devs, color=cmap(norm(colors))) for bar in bars: bar.set_edgecolor('black') ax.set_xlabel('Average distance [\u00C5]') sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array([]) plt.colorbar(sm, ax=ax, label='Weight') ax.tick_params(axis='both', labelsize=font_size) plt.tight_layout() if SETTINGS['auto_show']: showFigure()
[docs]def calcStatisticsInteractions(data, **kwargs): """Return the statistics of interactions from PDB Ensemble or trajectory including: (1) the weight for each residue pair: corresponds to the number of counts divided by the number of frames (values >1 are obtained when the residue pair creates multiple contacts); (2) average distance of interactions for each pair [in Ang], (3) standard deviation [Ang.], (4) Energy [in kcal/mol] that is not distance dependent. Energy by default is solvent-mediated from [OK98]_ ('IB_solv') in RT units. To use non-solvent-mediated (residue-mediated) entries ('IB_nosolv') from [OK98]_ in RT units or solvent-mediated values obtained from MD for InSty paper ('CS', under preparation) in kcal/mol, change `energy_list_type` parameter. If energy information is not available, please check whether the pair of residues is listed in the "tabulated_energies.txt" file, which is localized in the ProDy directory. :arg data: list with interactions from calcHydrogenBondsTrajectory() or other types :type data: list :arg weight_cutoff: value above which results will be displayed 1 or more means that residue contact is present in all conformations/frames default value is 0.2 (in 20% of conformations contact appeared) :type weight_cutoff: int, float :arg energy_list_type: name of the list with energies default is 'IB_solv' :type energy_list_type: 'IB_nosolv', 'IB_solv', 'CS' Example of usage: >>> atoms = parsePDB('PDBfile.pdb') >>> dcd = Trajectory('DCDfile.dcd') >>> dcd.link(atoms) >>> dcd.setCoords(atoms) >>> data = calcPiCationTrajectory(atoms, dcd, distA=5) or >>> interactionsTrajectory = InteractionsTrajectory() >>> data = interactionsTrajectory.getPiCation() """ interactions_list = [ (jj[0]+jj[2]+'-'+jj[3]+jj[5], jj[6]) for ii in data for jj in ii] weight_cutoff = kwargs.pop('weight_cutoff', 0.2) energy_list_type = kwargs.pop('energy_list_type', 'IB_solv') import numpy as np elements = [t[0] for t in interactions_list] stats = {} for element in elements: if element not in stats: values = [t[1] for t in interactions_list if t[0] == element] try: stats[element] = { "stddev": np.round(np.std(values),6), "mean": np.round(np.mean(values),6), "weight": np.round(float(len(values))/len(data), 6), "energy": get_energy([element.split('-')[0][:3], element.split('-')[1][:3]], energy_list_type) } except: LOGGER.warn('energy information is not available for ', element) stats[element] = { "stddev": np.round(np.std(values),6), "mean": np.round(np.mean(values),6), "weight": np.round(float(len(values))/len(data), 6) } statistic = [] unit = 'RT' if energy_list_type in ['IB_solv', 'IB_nosolv'] else 'kcal/mol' for key, value in stats.items(): if float(value['weight']) > weight_cutoff: LOGGER.info("Statistics for {0}:".format(key)) LOGGER.info(" Average [Ang.]: {}".format(value['mean'])) LOGGER.info(" Standard deviation [Ang.]: {0}".format(value['stddev'])) LOGGER.info(" Weight: {0}".format(value['weight'])) try: LOGGER.info(" Energy [{0}]: {1}".format(unit, value['energy'])) statistic.append([key, value['weight'], value['mean'], value['stddev'], value['energy']]) except: statistic.append([key, value['weight'], value['mean'], value['stddev']]) else: pass statistic.sort(key=lambda x: x[1], reverse=True) if statistic == []: LOGGER.info("No meaningful interactions found. Decrease weight_cutoff to obtain some results (default is 0.2).") return statistic
[docs]def calcDistribution(interactions, residue1, residue2=None, **kwargs): """Distributions/histograms of pairs of amino acids. Histograms are normalized. :arg interactions: list of interactions :type interactions: list :arg residue1: residue name in 3-letter code and residue number :type residue1: str :arg residue2: residue name in 3-letter code and residue number :type residue2: str :arg metrics: name of the data type 'distance' or 'angle' depends on the type of interaction :type metrics: str """ import matplotlib import matplotlib.pyplot as plt metrics = kwargs.pop('metrics', 'distance') if residue2 == None: additional_residues = [] for sublist in interactions: for line in sublist: if (residue1 in line[0] or residue1 in line[3]): additional_residues.append(line[0]) additional_residues.append(line[3]) additional_residues = list(set(additional_residues)) additional_residues.remove(residue1) if (additional_residues) == []: pass else: LOGGER.info('Possible contacts for '+residue1+':') for i in additional_residues: LOGGER.info(i) else: values = [] additional_residues = [] for sublist in interactions: for line in sublist: if (residue1 in line[0] or residue1 in line[3]): additional_residues.append(line[0]) additional_residues.append(line[3]) if residue2 in line: if metrics == 'distance': values.append(line[6]) elif metrics == 'angle': values.append(line[7]) plt.hist(values, rwidth=0.95, density=True) plt.ylabel('Probability') if metrics == 'distance': plt.xlabel('Distance [Å]') elif metrics == 'angle': plt.xlabel('Angle [deg.]') plt.show() additional_residues = list(set(additional_residues)) additional_residues.remove(residue1) additional_residues.remove(residue2) if (additional_residues) == []: pass else: LOGGER.info('Additional contacts for '+residue1+':') for i in additional_residues: LOGGER.info(i)
[docs]def saveInteractionsAsDummyAtoms(atoms, interactions, filename, **kwargs): '''Creates a PDB file which will contain protein structure and dummy atoms that will be placed between pairs of interacting residues. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg interactions: list of interactions :type interactions: list :arg filename: name of the PDB file which will contain dummy atoms and protein structure :type filename: str :arg RESNAME_dummy: resname of the dummy atom, use 3-letter name be default is 'DUM' :type RESNAME_dummy: str ''' try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') RESNAME_dummy = kwargs.pop('RESNAME_dummy', 'DUM') def calcDUMposition(coord1, coord2): midpoint = [ (coord1[0] + coord2[0]) / 2, (coord1[1] + coord2[1]) / 2, (coord1[2] + coord2[2]) / 2 ] return midpoint all_DUMs = [] atoms_ = atoms.copy() for i in interactions: if len(i[1].split('_')) <= 3: res1_name = 'chain '+i[2]+' and resname '+i[0][:3]+' and resid '+i[0][3:]+' and index '+' '.join(i[1].split('_')[1:]) res1_coords = calcCenter(atoms.select(res1_name)) if len(i[1].split('_')) > 3: res1_name = 'chain '+i[2]+' and resname '+i[0][:3]+' and resid '+i[0][3:]+' and index '+' '.join(i[1].split('_')) res1_coords = calcCenter(atoms.select(res1_name)) if len(i[4].split('_')) <= 3: res2_name = 'chain '+i[5]+' and resname '+i[3][:3]+' and resid '+i[3][3:]+' and index '+' '.join(i[4].split('_')[1:]) res2_coords = calcCenter(atoms.select(res2_name)) if len(i[4].split('_')) > 3: res2_name = 'chain '+i[5]+' and resname '+i[3][:3]+' and resid '+i[3][3:]+' and index '+' '.join(i[4].split('_')) res2_coords = calcCenter(atoms.select(res2_name)) all_DUMs.append(calcDUMposition(res1_coords, res2_coords)) if all_DUMs == []: LOGGER.info('Lack of interactions') else: LOGGER.info('Creating file with dummy atoms') dummyAtoms = AtomGroup() coords = array([all_DUMs], dtype=float) dummyAtoms.setCoords(coords) dummyAtoms.setNames([RESNAME_dummy]*len(dummyAtoms)) dummyAtoms.setResnums(range(1, len(dummyAtoms)+1)) dummyAtoms.setResnames([RESNAME_dummy]*len(dummyAtoms)) writePDB(filename, atoms_+dummyAtoms)
[docs]def listLigandInteractions(PLIP_output, **kwargs): """Create a list of interactions from PLIP output created using calcLigandInteractions(). Results can be displayed in VMD. :arg PLIP_output: Results from PLIP for protein-ligand interactions. :type PLIP_output: PLIP object obtained from calcLigandInteractions() :arg output: parameter to print the interactions on the screen while analyzing the structure (True | False) Default is False :type output: bool Note that five types of interactions are considered: hydrogen bonds, salt bridges, pi-stacking, cation-pi, hydrophobic and water bridges.""" Inter_list_all = [] output = kwargs.pop('output', False) for i in PLIP_output.all_itypes: param_inter = [method for method in dir(i) if method.startswith('_') is False] if str(type(i)).split('.')[-1].strip("'>") == 'hbond': Inter_list = ['HBs',i.restype+str(i.resnr), i[0].type+'_'+str(i.d_orig_idx), i.reschain, i.restype_l+str(i.resnr_l), i[2].type+'_'+str(i.a_orig_idx), i.reschain_l, i.distance_ad, i.angle, i[0].coords, i[2].coords] if str(type(i)).split('.')[-1].strip("'>") == 'saltbridge': Inter_list = ['SBs',i.restype+str(i.resnr), '_'.join(map(str,i.negative.atoms_orig_idx)), i.reschain, i.restype_l+str(i.resnr_l), '_'.join(map(str,i.positive.atoms_orig_idx)), i.reschain_l, i.distance, None, i.negative.center, i.positive.center] if str(type(i)).split('.')[-1].strip("'>") == 'pistack': Inter_list = ['PiStack',i.restype+str(i.resnr), '_'.join(map(str,i[0].atoms_orig_idx)), i.reschain, i.restype_l+str(i.resnr_l), '_'.join(map(str,i[1].atoms_orig_idx)), i.reschain_l, i.distance, i.angle, i[0].center, i[1].center] if str(type(i)).split('.')[-1].strip("'>") == 'pication': Inter_list = ['PiCat',i.restype+str(i.resnr), '_'.join(map(str,i[0].atoms_orig_idx)), i.reschain, i.restype_l+str(i.resnr_l), '_'.join(map(str,i[1].atoms_orig_idx)), i.reschain_l, i.distance, None, i[0].center, i[1].center] if str(type(i)).split('.')[-1].strip("'>") == 'hydroph_interaction': Inter_list = ['HPh',i.restype+str(i.resnr), i[0].type+'_'+str(i[0].idx), i.reschain, i.restype_l+str(i.resnr_l), i[2].type+'_'+str(i[2].idx), i.reschain_l, i.distance, None, i[0].coords, i[2].coords] if str(type(i)).split('.')[-1].strip("'>") == 'waterbridge': water = i.water Inter_list = ['watBridge',i.restype+str(i.resnr), i[0].type+'_'+str(i[0].idx), i.reschain, i.restype_l+str(i.resnr_l), i[3].type+'_'+str(i[3].idx), i.reschain_l, [i.distance_aw, i.distance_dw], [i.d_angle, i.w_angle], i[0].coords, i[3].coords, i.water.coords, i[7].residue.name+'_'+str(i[7].residue.idx)] Inter_list_all.append(Inter_list) if output == True: LOGGER.info("%3s%12s%10s%20s%8s <---> %6s%10s%6s%10s%16s" % ('#','Type','Residue','Atoms','Chain','','Ligand','Atoms','Chain','Distance/Angle')) for nr_k,k in enumerate(Inter_list_all): if k[0] == 'watBridge': LOGGER.info("%3i%12s%10s%26s%4s <---> %8s%12s%4s%12s%14s" % (nr_k+1,k[0],k[1],k[2],k[3],k[4],k[5],k[6], ' '.join(str(np.round(x, 2)) for x in k[7]), ' '.join(str(np.round(x, 2)) for x in k[8]))) else: LOGGER.info("%3i%12s%10s%26s%4s <---> %8s%12s%4s%6.1f" % (nr_k+1,k[0],k[1],k[2],k[3],k[4],k[5],k[6],k[7])) return Inter_list_all
[docs]def calcLigandInteractions(atoms, **kwargs): """Provide ligand interactions with other elements of the system including protein, water and ions. Results are computed by PLIP [SS15]_ which should be installed. Note that PLIP will not recognize ligand unless it will be HETATM in the PDB file. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg sele: a selection string for residues of interest default is 'all not (water or protein or ion)' :type sele: str :arg ignore_ligs: List of ligands which will be excluded from the analysis. :type ignore_ligs: list To display results as a list of interactions use listLigandInteractions() and for visualization in VMD please use showLigandInteraction_VMD() Requirements of usage: ## Instalation of Openbabel: >>> conda install -c conda-forge openbabel ## https://anaconda.org/conda-forge/openbabel ## Instalation of PLIP >>> conda install -c conda-forge plip ## https://anaconda.org/conda-forge/plip # https://github.com/pharmai/plip/blob/master/DOCUMENTATION.md .. [SS15] Salentin S., Schreiber S., Haupt V. J., Adasme M. F., Schroeder M. PLIP: fully automated protein–ligand interaction profiler *Nucl. Acids Res.* **2015** 43:W443-W447. """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') try: from plip.structure.preparation import PDBComplex except ImportError: raise ImportError("Install Openbabel and PLIP.") import tempfile with tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file: writePDB(temp_pdb_file.name, atoms, csets=atoms.getACSIndex()) temp_pdb_file_name = temp_pdb_file.name try: if atoms.hydrogen == None or atoms.hydrogen.numAtoms() < 30: # if there is no hydrogens in PDB structure LOGGER.info("Lack of hydrogens in the structure. Use addMissingAtoms to add them.") except: pass Ligands = [] # Ligands can be more than one my_mol = PDBComplex() my_mol.load_pdb(temp_pdb_file_name) # Load the PDB file into PLIP class if 'sele' in kwargs: sele = kwargs['sele'] else: sele='all not (water or protein or ion)' if 'ignore_ligs' in kwargs: ignore_ligs = kwargs['ignore_ligs'] else: ignore_ligs=['MAN', 'SOD', 'CLA'] sele = sele+' and not (resname '+' '.join(ignore_ligs)+')' ligand_select = atoms.select(sele) analyzedLigand = [] try: for i in range(len(ligand_select.getResnums())): ResID = ligand_select.getResnames()[i] ChainID = ligand_select.getChids()[i] ResNames = ligand_select.getResnums()[i] my_bsid = str(ResID)+':'+str(ChainID)+':'+str(ResNames) if my_bsid not in analyzedLigand: LOGGER.info("LIGAND: {0}".format(my_bsid)) analyzedLigand.append(my_bsid) my_mol.analyze() my_interactions = my_mol.interaction_sets[my_bsid] # Contains all interaction data Ligands.append(my_interactions) listLigandInteractions(my_interactions) return Ligands, analyzedLigand except: LOGGER.info("Ligand not found.")
[docs]def showProteinInteractions_VMD(atoms, interactions, color='red',**kwargs): """Save information about protein interactions to a TCL file (filename) which can be further use in VMD to display all intercations in a graphical interface (in TKConsole: play script_name.tcl). Different types of interactions can be saved separately (color can be selected) or all at once for all types of interactions (hydrogen bonds - blue, salt bridges - yellow, pi stacking - green, cation-pi - orangem, hydrophobic - silver, and disulfide bonds - black). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg interactions: List of interactions for protein interactions. :type interactions: List of lists :arg color: color to draw interactions in VMD, not used only for single interaction type. default **"red"** :type color: str :arg filename: name of TCL file where interactions will be saved. :type filename: str Example (hydrogen bonds for protein only): >>> interactions = calcHydrogenBonds(atoms.protein, distA=3.2, angle=30) or all interactions at once: >>> interactions = calcProteinInteractions(atoms.protein) """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') if not isinstance(interactions, list): raise TypeError('interactions must be a list of interactions.') try: filename = kwargs['filename'] except: filename = atoms.getTitle()+'_interaction.tcl' tcl_file = open(filename, 'w') def TCLforSingleInteraction(interaction, color='blue', tcl_file=tcl_file): """Creates TCL file for the VMD program based on the interactions computed by any function which returns interactions. :arg interactions: List of interaction lists for protein interactions. :type interactions: list :arg color: Name of the color which will be used for the visualization of interactions in VMD :type color: str :arg tcl_file: name of the TCL file which will be saved for visualization :type tcl_file: str """ tcl_file.write('draw color '+color+'\n') for nr_i,i in enumerate(interaction): try: at1 = atoms.select('index '+' '.join([k for k in i[1].split('_') if k.isdigit() ] )) at1_atoms = ' '.join(map(str,list(calcCenter(at1.getCoords())))) at2 = atoms.select('index '+' '.join([kk for kk in i[4].split('_') if kk.isdigit() ] )) at2_atoms = ' '.join(map(str,list(calcCenter(at2.getCoords())))) tcl_file.write('draw line {'+at1_atoms+'} {'+at2_atoms+'} style dashed width 4\n') tcl_file.write('mol color Name\n') tcl_file.write('mol representation Licorice 0.100000 12.000000 12.000000\n') tcl_file.write('mol selection (resname '+at1.getResnames()[0]+' and resid '+str(at1.getResnums()[0]) +' and chain '+at1.getChids()[0]+' and noh) or (resname '+at2.getResnames()[0]+' and resid ' +str(at2.getResnums()[0])+' and chain '+at2.getChids()[0]+' and noh)\n') tcl_file.write('mol material Opaque\n') tcl_file.write('mol addrep 0 \n') except: LOGGER.info("There was a problem.") if len(interactions) == 7 and isinstance(interactions[0][0], list): # For all seven types of interactions at once # HBs_calculations, SBs_calculations, SameChargeResidues, Pi_stacking, Pi_cation, Hydroph_calculations, Disulfide Bonds colors = ['blue', 'yellow', 'red', 'green', 'orange', 'silver', 'black'] for nr_inter,inter in enumerate(interactions): TCLforSingleInteraction(inter, color=colors[nr_inter], tcl_file=tcl_file) elif interactions == []: LOGGER.info("Lack of results") elif len(interactions[0]) == 0: LOGGER.info("Lack of results") else: TCLforSingleInteraction(interactions,color) tcl_file.write('draw materials off') tcl_file.close() LOGGER.info("TCL file saved")
[docs]def showLigandInteraction_VMD(atoms, interactions, **kwargs): """Save information from PLIP for ligand-protein interactions in a TCL file which can be further used in VMD to display all intercations in a graphical interface (hydrogen bonds - `blue`, salt bridges - `yellow`, pi stacking - `green`, cation-pi - `orange`, hydrophobic - `silver` and water bridges - `cyan`). :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg interactions: List of interactions lists for protein-ligand interactions. :type interactions: list :arg filename: name of TCL file where interactions will be saved. :type filename: str To obtain protein-ligand interactions: >>> calculations = calcLigandInteractions(atoms) >>> interactions = listLigandInteractions(calculations) """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') if not isinstance(interactions, list): raise TypeError('interactions must be a list of interactions.') try: filename = kwargs['filename'] except: filename = atoms.getTitle()+'_interaction.tcl' pdb_name = atoms.getTitle()+'_sele.pdb' writePDB(pdb_name, atoms) tcl_file = open(filename, 'w') if len(interactions[0]) >= 10: dic_color = {'HBs':'blue','PiStack':'green','SBs':'yellow','PiCat':'orange', 'HPh':'silver','watBridge':'cyan'} for i in interactions: tcl_file.write('draw color '+dic_color[i[0]]+'\n') if i[0] == 'waterbridge': hoh_id = atoms.select('x `'+str(i[11][0])+'` and y `'+str(i[11][1])+'` and z `'+str(i[11][2])+'`').getResnums()[0] tcl_file.write('draw line {'+str(' '.join(map(str,i[9])))+'} {'+str(' '.join(map(str,i[11])))+'} style dashed width 4\n') tcl_file.write('draw line {'+str(' '.join(map(str,i[10])))+'} {'+str(' '.join(map(str,i[11])))+'} style dashed width 4\n') tcl_file.write('mol color Name\n') tcl_file.write('mol representation Licorice 0.100000 12.000000 12.000000\n') tcl_file.write('mol selection (resname '+i[1][:3]+' and resid '+str(i[1][3:]) +' and chain '+i[3]+' and noh) or (resname '+i[4][:3]+' and resid ' +str(i[4][3:])+' and chain '+i[6]+' and noh) or (water and resid '+str(hoh_id)+')\n') else: tcl_file.write('draw line {'+str(' '.join(map(str,i[9])))+'} {'+str(' '.join(map(str,i[10])))+'} style dashed width 4\n') tcl_file.write('mol color Name\n') tcl_file.write('mol representation Licorice 0.100000 12.000000 12.000000\n') tcl_file.write('mol selection (resname '+i[1][:3]+' and resid '+str(i[1][3:]) +' and chain '+i[3]+' and noh) or (resname '+i[4][:3]+' and resid ' +str(i[4][3:])+' and chain '+i[6]+' and noh)\n') tcl_file.write('mol material Opaque\n') tcl_file.write('mol addrep 0 \n') tcl_file.write('draw materials off') tcl_file.close() LOGGER.info("TCL file saved")
def SMINA_extract_data(result): """Supporting function for analysis of the SMINA results.""" import re data = {} # Extracting Affinity from SMINA output affinity_match = re.search(r'Affinity: ([0-9.-]+) \(kcal/mol\)', result) if affinity_match: data['Affinity'] = float(affinity_match.group(1)) # Extracting Intramolecular energy from SMINA output intramolecular_energy_match = re.search(r'Intramolecular energy: ([0-9.-]+)', result) if intramolecular_energy_match: data['Intramolecular energy'] = float(intramolecular_energy_match.group(1)) # Extracting Weights and Terms from SMINA output weights_terms_match = re.search(r'Weights\s+Terms\s*([\s\S]*?)## Name', result, re.DOTALL) if weights_terms_match: weights_terms_text = weights_terms_match.group(1) term_lines = weights_terms_text.strip().split('\n') term_dict = {} for line in term_lines: parts = line.split() if len(parts) >= 2: weight = float(parts[0]) term = ' '.join(parts[1:]) term_dict[term] = weight data.update(term_dict) term_values_match = re.search(r'Term values, before weighting:\n##\s+(.*?)\n', result, re.DOTALL) if term_values_match: term_values_text = term_values_match.group(1) term_values_array = np.array([float(value) for value in term_values_text.split()]) data['Term values, before weighting'] = term_values_array.tolist() return data
[docs]def calcSminaBindingAffinity(atoms, trajectory=None, **kwargs): """Computing binding affinity of ligand toward protein structure using SMINA package [DRK13]_. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic`, :class:`.LigandInteractionsTrajectory` :arg protein_selection: selection string for the protein and other compoment of the system that should be included, e.g. "protein and chain A", Default is "protein" :type protein_selection: str :arg ligand_selection: selection string for ligand, e.g. "resname ADP", Default is "all not protein" :type ligand_selection: str :arg ligand_selection: scoring function (vina or vinardo) Default is "vina" :type ligand_selection: str :arg atom_terms: write per-atom interaction term values. It will provide more information as dictionary for each frame/model, and details for atom terms will be saved in terms_*frame_number*.txt, Default is False :type atom_terms: bool SMINA installation is required to compute ligand binding affinity: >> conda install -c conda-forge smina (for Anaconda) For more information on SMINA see https://sourceforge.net/projects/smina/. If you benefited from SMINA, please consider citing [DRK13]_. .. [DRK13] Koes D. R., Baumgartner M. P., Camacho C. J., Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise, *J. Chem. Inf. Model.* **2013** 53: 1893–1904. """ import tempfile import subprocess import re if isinstance(atoms, LigandInteractionsTrajectory): atoms = atoms._atoms trajectory = atoms._traj try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') start_frame = kwargs.pop('start_frame', 0) stop_frame = kwargs.pop('stop_frame', -1) protein_selection = kwargs.pop('protein_selection', "protein") ligand_selection = kwargs.pop('ligand_selection', "all not protein") scoring_function = kwargs.pop('scoring_function', 'vina') atom_terms = kwargs.pop('atom_terms', False) bindingAffinity = [] if trajectory is not None: # Trajectory if isinstance(trajectory, Atomic): trajectory = Ensemble(trajectory) if isinstance(trajectory, Trajectory): nfi = trajectory._nfi trajectory.reset() numFrames = trajectory._n_csets if stop_frame == -1: traj = trajectory[start_frame:] else: traj = trajectory[start_frame:stop_frame+1] atoms_copy = atoms.copy() data_final = [] for j0, frame0 in enumerate(traj, start=start_frame): atoms_copy.setCoords(frame0.getCoords()) protein = atoms_copy.select(protein_selection) ligand = atoms_copy.select(ligand_selection) with tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file, \ tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file_lig: # Files are starage in the memory writePDB(temp_pdb_file.name, protein) writePDB(temp_pdb_file_lig.name, ligand) if atom_terms == False: command = "smina -r {} -l {} --score_only --scoring {}".format(temp_pdb_file.name, temp_pdb_file_lig.name, scoring_function) else: command = "smina -r {} -l {} --score_only --scoring {} --atom_terms terms_{}.txt".format(temp_pdb_file.name, temp_pdb_file_lig.name, scoring_function, j0) result = subprocess.check_output(command, shell=True, text=True) data = SMINA_extract_data(result) LOGGER.info('Frame {0}: {1} kcal/mol'.format(j0, data['Affinity'])) bindingAffinity.append(data['Affinity']) data_final.append(data) if isinstance(trajectory, Trajectory): trajectory._nfi = nfi else: if atoms.numCoordsets() == 1: # Single PDB protein = atoms.select(protein_selection) ligand = atoms.select(ligand_selection) with tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file, \ tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file_lig: writePDB(temp_pdb_file.name, protein) writePDB(temp_pdb_file_lig.name, ligand) if atom_terms == False: command = "smina -r {} -l {} --score_only --scoring {}".format(temp_pdb_file.name, temp_pdb_file_lig.name, scoring_function) else: command = "smina -r {} -l {} --score_only --scoring {} --atom_terms terms.txt".format(temp_pdb_file.name, temp_pdb_file_lig.name, scoring_function) result = subprocess.check_output(command, shell=True, text=True) data = SMINA_extract_data(result) data_final = data bindingAffinity.append(data['Affinity']) if atoms.numCoordsets() > 1: # Multi-model PDB data_final = [] for i in range(len(atoms.getCoordsets()[start_frame:stop_frame+1])): atoms.setACSIndex(i+start_frame) protein = atoms.select(protein_selection) ligand = atoms.select(ligand_selection) with tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file, \ tempfile.NamedTemporaryFile(delete=False, suffix=".pdb") as temp_pdb_file_lig: writePDB(temp_pdb_file.name, protein, csets=atoms.getACSIndex()) writePDB(temp_pdb_file_lig.name, ligand, csets=atoms.getACSIndex()) if atom_terms == False: command = "smina -r {} -l {} --score_only --scoring {}".format(temp_pdb_file.name, temp_pdb_file_lig.name, scoring_function) else: command = "smina -r {} -l {} --score_only --scoring {} --atom_terms terms_{}.txt".format(temp_pdb_file.name, temp_pdb_file_lig.name, scoring_function, i+start_frame) result = subprocess.check_output(command, shell=True, text=True) data = SMINA_extract_data(result) LOGGER.info('Model {0}: {1} kcal/mol'.format(i+start_frame, data['Affinity'])) bindingAffinity.append(data['Affinity']) data_final.append(data) else: LOGGER.info('Include trajectory or use multi-model PDB file.') if atom_terms == False: return bindingAffinity else: return data_final
[docs]def calcSminaPerAtomInteractions(atoms, list_terms): """Computing the summary of per-atom interaction term values using SMINA package [DRK13]_. It will return dictionary with per-atom interaction term values. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic`, :class:`.LigandInteractionsTrajectory` :arg list_terms: List of *terms.txt* files obtained from meth:`.calcSminaBindingAffinity` using *atom_terms = True* :type list_terms: list Important: First text file in the list should be reference structure which correspond to the provided coordinates as atoms. """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') if not isinstance(list_terms, list): raise TypeError('list_terms must be a list of text files with per-atom interaction term values.') LOGGER.info('Reference file: {}'.format(list_terms[0])) ref_file = open(list_terms[0], 'r').readlines() dict_terms = {} for nr_j, j in enumerate(ref_file[1:-2]): inter_type = j.split()[0] xyz = j.split()[1].strip('<').strip('>').split(',') try: xyz_atom = (atoms.select('x `'+str(xyz[0])+'` y `'+str(xyz[1])+'` z `'+str(xyz[2])+'`')).getNames()[0] except: xyz_atom = ' ' sum_of_energy = np.sum([float(i) for i in j.split()[2:]]) atom_name_with_type = inter_type+ ' '+xyz_atom dict_terms[atom_name_with_type] = [sum_of_energy] # Checking by specific line each file for i in list_terms[1:]: an_line = open(i, 'r').readlines()[nr_j+1] sum_of_energy_line = np.sum([float(i) for i in an_line.split()[2:]]) dict_terms[atom_name_with_type].append(sum_of_energy_line) return dict_terms
[docs]def calcSminaTermValues(data): """Computing weights multiplied by term values, before weighting for each Term. As a results will are obtaining a dictionary. :arg data: List of results provided by Smina using meth:`.calcSminaBindingAffinity` with *atom_terms = True* :type data: list """ if not isinstance(data, list): raise TypeError('data must be a list') result_dict = {key: [] for key in list(data[0].keys())[2:-1]} for i in data: weights = i['Term values, before weighting'] for idx, key in enumerate(result_dict.keys()): result_dict[key].append(i[key] * weights[idx] if key in i else None) return result_dict
[docs]def showSminaTermValues(data): """Display a histogram of weights multiplied by term values, before weighting for each Term. As a results will are obtaining a dictionary. :arg data: List of results provided by Smina using meth:`.calcSminaBindingAffinity` with *atom_terms = True* :type data: list """ import matplotlib.pyplot as plt import numpy as np if not isinstance(data, list): raise TypeError('data must be a list') term_values = calcSminaTermValues(data) non_zero_values = {key: [v for v in value if v != 0] for key, value in term_values.items()} fig, ax = plt.subplots() colors = ['blue', 'orange', 'red', 'green', 'purple', 'silver', 'cyan', 'magenta', 'yellow'] alpha = 0.5 for i, (key, values) in enumerate(non_zero_values.items()): if values: show = ax.hist(values, bins=10, alpha=alpha, label=key, color=colors[i % len(colors)]) ax.legend() ax.set_xlabel('Energy [kcal/mol]') ax.set_ylabel('# counts') if SETTINGS['auto_show']: showFigure() return show
[docs]def createFoldseekAlignment(prot_seq, prot_foldseek, **kwargs): """Aligns sequences from prot_seq with homologous sequences identified in prot_foldseek, generating a multiple sequence alignment. :arg prot_seq: The natural sequence extracted from the PDB (seq file) :type prot_seq: str :arg prot_foldseek: The results from foldseek (foldseek file) :type prot_foldseek: str :arg msa_output_name: The natural sequence extracted from the PDB (msa file) :type msa_output_name: str """ msa_output_name = kwargs.pop('msa_output_name', 'prot_struc.msa') def find_match_index(tar_nogap, nat_seq): tar_nogap_str = ''.join(tar_nogap) nat_seq_str = ''.join(nat_seq) index = nat_seq_str.find(tar_nogap_str) return index # Read input files with open(prot_seq, 'r') as f: file1 = f.readlines() with open(prot_foldseek, 'r') as f: file2 = f.readlines() # Open output file with open(msa_output_name, 'w') as fp: nat_seq = list(file1[0].strip()) # Write the natural sequence to the output file fp.write(''.join(nat_seq) + "\n") # Process each foldseek entry for line in file2: entries = line.split() if float(entries[2]) >= 0.5: tar_seq = list(entries[11].strip()) mat_seq = list(entries[12].strip()) tar_nogap = [] processed_mat = [] for j in range(len(tar_seq)): if tar_seq[j] != '-': tar_nogap.append(tar_seq[j]) processed_mat.append(mat_seq[j]) match_index = find_match_index(tar_nogap, nat_seq) end_index = match_index + len(tar_nogap) m = 0 for l in range(len(nat_seq)): if l < match_index: fp.write("-") elif l >= match_index and l < end_index: fp.write(processed_mat[m]) m += 1 else: fp.write("-") fp.write("\n") LOGGER.info("MSA file is now created, and saved as {}.".format(msa_output_name))
[docs]def extractMultiModelPDB(multimodelPDB, **kwargs): """Extracts individual PDB models from multimodel PDB and places them into the pointed directory. If used for calculating calcSignatureInteractions align the models. :arg multimodelPDB: The file containing models in multi-model PDB format :type multimodelPDB: str :arg folder_name: The name of the folder to which PDBs will be extracted :type folder_name: str """ import os folder_name = kwargs.pop('folder_name', 'struc_homologs') with open(multimodelPDB, 'r') as f: file = f.readlines() os.makedirs(folder_name, exist_ok=True) fp = None for line in file: line = line.strip() sig1 = line[:5] sig2 = line[:6] sig3 = line[:4] if sig1 == 'MODEL': model_number = line.split()[1] filename = 'model{}.pdb'.format(model_number) fp = open(filename, 'w') continue if sig2 == 'ENDMDL': if fp: fp.close() os.rename(filename, './{}/{}'.format(folder_name,filename)) continue if sig3 == 'ATOM' and fp: fp.write("{}\n".format(line)) LOGGER.info("Individual models are saved in {}.".format(folder_name))
[docs]def runFoldseek(pdb_file, chain, **kwargs): """This script processes a PDB file to extract a specified chain's sequence, searches for homologous structures using foldseek, and prepares alignment outputs for further analysis. Before using the function, install Foldseek: >>> conda install bioconda::foldseek More information can be found: https://github.com/steineggerlab/foldseek?tab=readme-ov-file#databasesand This function will not work under Windows. Example usage: runFoldseek('5kqm.pdb', 'A', database_folder='~/Downloads/foldseek/pdb') where previous a folder called 'foldseek' were created and PDB database was uploaded using: >>> foldseek databases PDB pdb tmp (Linux console) :arg pdb_file: A PDB file path :type pdb_file: str :arg chain: Chain identifier :type chain: str :arg coverage_threshold: Coverage threshold Default is 0.3 :type coverage_threshold: float :arg tm_threshold: TM-score threshold Default is 0.5 :type tm_threshold: float :arg database_folder: Folder with the database Default is '~/Downloads/foldseek/pdb' To download the database use: 'foldseek databases PDB pdb tmp' in the console :type database_folder: str :arg fixer: The method for fixing lack of hydrogen bonds Default is 'pdbfixer' :type fixer: 'pdbfixer' or 'openbabel' :arg subset: subsets of atoms: 'ca', 'bb', 'heavy', 'noh', 'all' (see matchChains()) Default is 'ca' :type subset: str :arg seqid: Minimum value of the sequence identity (see matchChains()) Default is 5 :type seqid: float :arg overlap: percent overlap (see matchChains()) Default is 50 :type overlap: float :arg folder_name: Folder where the results will be collected Default is 'struc_homologs' :type folder_name: str """ import os import subprocess import re import sys database_folder = kwargs.pop('database_folder', '~/Downloads/foldseek/pdb') coverage_threshold = kwargs.pop('coverage_threshold', 0.3) tm_threshold = kwargs.pop('tm_threshold', 0.5) folder_name = kwargs.pop('folder_name', 'struc_homologs') subset = kwargs.pop('subset', 'ca') seqid = kwargs.pop('seqid', 5) overlap = kwargs.pop('overlap', 50) if not isinstance(pdb_file, str): raise TypeError('Please provide the name of the PDB file.') full_path = os.path.expanduser(database_folder) if not os.path.exists(full_path.strip('pdb')): raise ValueError('The required database is not found in {0}. Please download it first.'.format(database_folder.strip('pdb'))) # Define the amino acid conversion function def aa_onelet(three_letter_code): codes = { 'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C', 'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P', 'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V', 'MSE': 'M' } return codes.get(three_letter_code) # Function to extract the sequence from the PDB file def extract_sequence_from_pdb(pdb_file, chain, output_file): sequence = [] prev_resid = -9999 with open(pdb_file, 'r') as pdb: for line in pdb: if line.startswith("ATOM"): ch = line[21] resid = int(line[22:26].strip()) aa = line[17:20].strip() if ch == chain and resid != prev_resid: one_aa = aa_onelet(aa) if one_aa: sequence.append(one_aa) prev_resid = resid with open(output_file, 'w') as seq_file: seq_file.write(''.join(sequence)) # Inputs fpath = pdb_file.strip() chain = chain.strip() cov_threshold = float(coverage_threshold) tm_threshold = float(tm_threshold) # Filter PDB file awk_command = "awk '{{if (substr($0, 22, 1) == \"{0}\") print}}'".format(chain) subprocess.run("cat {0} | grep '^ATOM' | {1} > inp.pdb".format(fpath, awk_command), shell=True) # Run foldseek and other commands subprocess.run([ 'foldseek', 'easy-search', 'inp.pdb', database_folder, 'prot.foldseek', 'tmp2', '--exhaustive-search', '1', '--format-output', "query,target,qstart,qend,tstart,tend,qcov,tcov,qtmscore,ttmscore,rmsd,qaln,taln", '-c', str(cov_threshold), '--cov-mode', '0' ]) # Extract sequence and write to prot.seq extract_sequence_from_pdb('inp.pdb', chain, 'prot.seq') createFoldseekAlignment('prot.seq', 'prot.foldseek', msa_output_name='prot_struc.msa') # Read input files with open('inp.pdb', 'r') as f: file1 = f.readlines() with open('prot.foldseek', 'r') as f: file2 = f.readlines() with open('prot_struc.msa', 'r') as f: file3 = f.readlines() # Open output files fp1 = open("aligned_structures.pdb", 'w') fp2 = open("shortlisted_resind.msa", 'w') fp6 = open("seq_match_reconfirm.txt", 'w') fp7 = open("aligned_structures_extended.pdb", 'w') fp9 = open("shortlisted.foldseek", 'w') fp10 = open("shortlisted.msa", 'w') # Initialize variables mod_count = 1 fp1.write("MODEL\t{0}\n".format(mod_count)) fp7.write("MODEL\t{0}\n".format(mod_count)) seq1 = list(file3[0].strip()) ind1 = 0 prev_id = -9999 # Process input PDB file for line in file1: line = line.strip() id_ = line[0:4] ch = line[21] resid = int(line[22:26].strip()) aa = line[17:20] if id_ == 'ATOM' and ch == chain and resid != prev_id: prev_id = resid one_aa = aa_onelet(aa) if one_aa == seq1[ind1]: fp1.write("{0}\n".format(line)) fp7.write("{0}\n".format(line)) fp2.write("{0} ".format(resid)) ind1 += 1 else: print("Mismatch in sequence and structure of Query protein at Index {0}".format(ind1)) break elif id_ == 'ATOM' and ch == chain and resid == prev_id: fp1.write("{0}\n".format(line)) fp7.write("{0}\n".format(line)) fp1.write("TER\nENDMDL\n\n") fp7.write("TER\nENDMDL\n\n") fp2.write("\n") fp10.write("{0}\n".format(file3[0].strip())) # Processing foldseek results os.makedirs("temp", exist_ok=True) for i, entry in enumerate(file2): entries = re.split(r'\s+', entry.strip()) if float(entries[8]) < tm_threshold: continue tstart = int(entries[4]) tend = int(entries[5]) pdb = entries[1][:4] chain = entries[1][-1] fname = "{0}.pdb".format(pdb) # Download and process the target PDB file subprocess.run(['wget', '-P', 'temp', "https://files.rcsb.org/download/{0}".format(fname)]) awk_command = "awk '{{if (substr($0, 22, 1) == \"{0}\") print}}'".format(chain) subprocess.run("cat ./temp/{0} | grep -E '^(ATOM|HETATM)' | {1} > target.pdb".format(fname, awk_command), shell=True) # Check if target.pdb has fewer than 5 lines if sum(1 for _ in open("target.pdb")) < 5: LOGGER.info("target.pdb has fewer than 5 lines. Skipping further processing.") subprocess.run(['rm', 'target.pdb']) continue with open('target.pdb', 'r') as target_file: file4 = target_file.readlines() qseq = list(entries[11]) tseq = list(entries[12]) start_line = 0 prevind = -9999 tarind = 0 for j, line in enumerate(file4): resid = int(line[22:26].strip()) if resid != prevind: prevind = resid tarind += 1 if tarind == tstart: start_line = j break prevind = -9999 ind2 = 0 j = start_line flag2 = False with open("temp_coord.txt", 'w') as fp4, \ open("temp_resind.txt", 'w') as fp3, \ open("temp_seq.txt", 'w') as fp5: for k in range(len(qseq)): if tseq[k] != '-' and qseq[k] != '-': line = file4[j].strip() resid = int(line[22:26].strip()) aa = line[17:20] one_aa = aa_onelet(aa) if one_aa == tseq[k]: fp3.write("{0} ".format(resid)) fp5.write("{0}".format(one_aa)) prevind = resid else: print("Mismatch in sequence and structure of Target protein {0}{1} at line {2} Index {3}-{4} ne {5}".format( pdb, chain, j, k, one_aa, tseq[k])) flag2 = True break while resid == prevind: fp4.write("{0}\n".format(line)) j += 1 if j >= len(file4): break line = file4[j].strip() resid = int(line[22:26].strip()) elif tseq[k] != '-' and qseq[k] == '-': line = file4[j].strip() resid = int(line[22:26].strip()) aa = line[17:20] one_aa = aa_onelet(aa) if one_aa == tseq[k]: prevind = resid else: print("Mismatch in sequence and structure of Target protein {0}{1} at Line {2} Index {3}-{4} ne {5}".format( pdb, chain, j, k, one_aa, tseq[k])) flag2 = True break while resid == prevind: j += 1 if j >= len(file4): break line = file4[j].strip() resid = int(line[22:26].strip()) elif tseq[k] == '-' and qseq[k] != '-': fp3.write("- ") fp5.write("-") if flag2: continue with open("temp_coord.txt", 'r') as f: tmpcord = f.readlines() with open("temp_resind.txt", 'r') as f: tmpresind = f.readlines() with open("temp_seq.txt", 'r') as f: tmpseq = f.readlines() ind3 = i + 1 seq1 = list(file3[ind3].strip()) seq2 = tmpresind[0].strip().split() fp9.write("{0}".format(file2[i])) fp10.write("{0}\n".format(file3[ind3].strip())) for m in range(len(seq1)): if seq1[m] == '-': fp2.write("{0} ".format(seq1[m])) else: break for n in range(len(seq2)): fp2.write("{0} ".format(seq2[n])) fp6.write("{0}".format(seq1[m])) m += 1 for o in range(m, len(seq1)): fp2.write("{0} ".format(seq1[m])) fp2.write("\n") fp6.write("\n{0}\n\n\n".format(tmpseq[0])) mod_count += 1 fp1.write("MODEL\t{0}\n".format(mod_count)) fp7.write("MODEL\t{0}\n".format(mod_count)) for line in file4: if line.strip(): fp7.write("{0}\n".format(line.strip())) for line in tmpcord: fp1.write("{0}".format(line)) fp1.write("TER\nENDMDL\n\n") fp7.write("TER\nENDMDL\n\n") # Cleanup fp1.close() fp2.close() fp6.close() fp7.close() fp9.close() fp10.close() extractMultiModelPDB('aligned_structures.pdb', folder_name=folder_name) subprocess.run("rm -f inp.pdb prot.seq target.pdb temp_coord.txt temp_resind.txt temp_seq.txt", shell=True) subprocess.run("rm -rf tmp2 temp", shell=True) # New part pwd = os.path.abspath(folder_name) list_pdbs = [pwd+'/'+ff for ff in os.listdir(pwd) if ff.endswith('.pdb')] list_pdbs.sort(key=lambda x: int(''.join(filter(str.isdigit, x)))) # all structures will be aligned on model1.pdb as in the oryginal code LOGGER.info('Adding hydrogens to the structures..') new_pdbids = fixStructuresMissingAtoms(list_pdbs, method='pdbfixer', model_residues=True, overwrite=True) structures = parsePDB(new_pdbids) target = structures[0] rmsds = [] for mobile in structures[1:]: try: LOGGER.info('Aligning the structures..') i = mobile.getTitle() LOGGER.info(i) matches = matchChains(mobile.protein, target.protein, subset=subset, seqid=seqid, overlap=overlap) m = matches[0] m0_alg, T = superpose(m[0], m[1], weights=m[0].getFlags("mapped")) rmsds.append(calcRMSD(m[0], m[1], weights=m[0].getFlags("mapped"))) source_file = pwd+'/'+'align__'+i+'.pdb' writePDB(source_file, mobile) except: LOGGER.warn('There is a problem with {}. Change seqid or overlap parameter to include the structure.'.format(i))
[docs]def runDali(pdb, chain, **kwargs): """This function calls searchDali() and downloads all the PDB files, separate by chains, add hydrogens and missing side chains, and finally align them and put into the newly created folder. :arg pdb: A PDB code :type pdb: str :arg chain: chain identifier :type chain: str :arg cutoff_len: Length of aligned residues < cutoff_len (must be an integer or a float between 0 and 1) See searchDali for more details Default is 0.5 :type cutoff_len: float :arg cutoff_rmsd: RMSD cutoff (see searchDali) Default is 1.0 :type cutoff_rmsd: float :arg cutoff_Z: Z score cutoff (see searchDali) Default is None :type cutoff_Z: float :arg cutoff_identity: RMSD cutoff (see searchDali) Default is None :type cutoff_identity: float :arg stringency: stringency for Dali cutoffs (see searchDali) Default is False :type stringency: bool :arg subset_Dali: fullPDB, PDB25, PDB50, PDB90 Default is 'fullPDB' :type subset_Dali: str :arg fixer: The method for fixing lack of hydrogen bonds Default is 'pdbfixer' :type fixer: 'pdbfixer' or 'openbabel' :arg subset: subsets of atoms: 'ca', 'bb', 'heavy', 'noh', 'all' (see matchChains()) Default is 'ca' :type subset: str :arg seqid: Minimum value of the sequence identity (see matchChains()) Default is 5 :type seqid: float :arg overlap: percent overlap (see matchChains()) Default is 50 :type overlap: float :arg folder_name: Folder where the results will be collected Default is 'struc_homologs' :type folder_name: str """ import os import shutil from prody.database import dali cutoff_len = kwargs.pop('cutoff_len', 0.5) cutoff_rmsd = kwargs.pop('cutoff_rmsd', 1.0) cutoff_Z = kwargs.pop('cutoff_Z', None) cutoff_identity = kwargs.pop('cutoff_identity', None) stringency = kwargs.pop('stringency', False) fixer = kwargs.pop('fixer', 'pdbfixer') subset_Dali = kwargs.pop('subset_Dali', 'fullPDB') subset = kwargs.pop('subset', 'ca') seqid = kwargs.pop('seqid', 5) overlap = kwargs.pop('overlap', 50) folder_name = kwargs.pop('folder_name', 'struc_homologs') dali_rec = dali.searchDali(pdb, chain, subset=subset_Dali) while not dali_rec.isSuccess: dali_rec.fetch() pdb_ids = dali_rec.filter(cutoff_len=cutoff_len, cutoff_rmsd=cutoff_rmsd, cutoff_Z=cutoff_Z, cutoff_identity=cutoff_identity, stringency=stringency) pdb_hits = [ (i[:4], i[4:]) for i in pdb_ids ] list_pdbs = [] LOGGER.info('Separating chains and saving into PDB file') for i in pdb_hits: LOGGER.info('PDB code {} and chain {}'.format(i[0], i[1])) p = parsePDB(i[0]).select('chain '+i[1]+' and protein') writePDB(i[0]+i[1]+'.pdb', p) list_pdbs.append(i[0]+i[1]+'.pdb') LOGGER.info('Adding hydrogens to the structures..') new_pdbids = fixStructuresMissingAtoms(list_pdbs, method='pdbfixer', model_residues=True, overwrite=True) os.makedirs(folder_name) structures = parsePDB(new_pdbids) target = structures[0] rmsds = [] for mobile in structures[1:]: try: LOGGER.info('Aligning the structures..') i = mobile.getTitle() LOGGER.info(i) matches = matchChains(mobile.protein, target.protein, subset=subset, seqid=seqid, overlap=overlap) m = matches[0] m0_alg, T = superpose(m[0], m[1], weights=m[0].getFlags("mapped")) rmsds.append(calcRMSD(m[0], m[1], weights=m[0].getFlags("mapped"))) source_file = 'align__'+i+'.pdb' writePDB(source_file, mobile) shutil.move(source_file, os.path.join(folder_name, os.path.basename(source_file))) except: LOGGER.warn('There is a problem with {}. Change seqid or overlap parameter to include the structure.'.format(i))
[docs]def runBLAST(pdb, chain, **kwargs): """This function calls blastPDB to find homologs and downloads all of them in PDB format to the local directory, separate chains that were identified by BLAST, add hydrogens and missing side chains, and finally align them and put into the newly created folder. :arg pdb: A PDB code :type pdb: str :arg chain: chain identifier :type chain: str :arg fixer: The method for fixing lack of hydrogen bonds Default is 'pdbfixer' :type fixer: 'pdbfixer' or 'openbabel' :arg subset: subsets of atoms: 'ca', 'bb', 'heavy', 'noh', 'all' (see matchChains()) Default is 'bb' :type subset: str :arg seqid: Minimum value of the sequence identity (see matchChains()) Default is 90 :type seqid: float :arg overlap: percent overlap (see matchChains()) Default is 50 :type overlap: float :arg folder_name: Folder where the results will be collected Default is 'struc_homologs' :type folder_name: str """ import os import shutil from prody.proteins.blastpdb import blastPDB fixer = kwargs.pop('fixer', 'pdbfixer') seqid = kwargs.pop('seqid', 90) overlap = kwargs.pop('overlap', 50) subset = kwargs.pop('subset', 'bb') folder_name = kwargs.pop('folder_name', 'struc_homologs') ref_prot = parsePDB(pdb) ref_hv = ref_prot.getHierView()[chain] sequence = ref_hv.getSequence() blast_record = blastPDB(sequence) while not blast_record.isSuccess: blast_record.fetch() pdb_hits = [] for key, item in blast_record.getHits(seqid).items(): pdb_hits.append((key, item['chain_id'])) list_pdbs = [] LOGGER.info('Separating chains and saving into PDB file') for i in pdb_hits: LOGGER.info('PDB code {} and chain {}'.format(i[0], i[1])) p = parsePDB(i[0]).select('chain '+i[1]+' and protein') writePDB(i[0]+i[1]+'.pdb', p) list_pdbs.append(i[0]+i[1]+'.pdb') LOGGER.info('Adding hydrogens to the structures..') new_pdbids = fixStructuresMissingAtoms(list_pdbs, method='pdbfixer', model_residues=True, overwrite=True) os.makedirs(folder_name) structures = parsePDB(new_pdbids) target = structures[0] rmsds = [] for mobile in structures[1:]: try: LOGGER.info('Aligning the structures..') i = mobile.getTitle() LOGGER.info(i) matches = matchChains(mobile.protein, target.protein, subset=subset, seqid=seqid, overlap=overlap) m = matches[0] m0_alg, T = superpose(m[0], m[1], weights=m[0].getFlags("mapped")) rmsds.append(calcRMSD(m[0], m[1], weights=m[0].getFlags("mapped"))) source_file = 'align__'+i+'.pdb' writePDB(source_file, mobile) shutil.move(source_file, os.path.join(folder_name, os.path.basename(source_file))) except: LOGGER.warn('There is a problem with {}. Change seqid or overlap parameter to include the structure.'.format(i))
[docs]def calcSignatureInteractions(PDB_folder, **kwargs): """Analyzes protein structures to identify various interactions using InSty. Processes data from the MSA file and folder with selected models. Example usage: >>> calcSignatureInteractions('./struc_homologs') >>> calcSignatureInteractions('./struc_homologs', mapping_file='shortlisted_resind.msa') :arg PDB_folder: Directory containing PDB model files :type PDB_folder: str :arg use_prefix: Whether to use perfix to select particular file names in the PDB_folder Default is True :type use_prefix: bool :arg mapping_file: Aligned residue indices, MSA file type required in Foldseek analyisis :type mapping_file: str """ import os mapping_file = kwargs.get('mapping_file') use_prefix = kwargs.pop('use_prefix', True) if use_prefix == True: align_files = [os.path.join(PDB_folder, file) for file in os.listdir(PDB_folder) if file.startswith("align_")] else: align_files = [os.path.join(PDB_folder, file) for file in os.listdir(PDB_folder)] functions_dict = { "HBs": calcHydrogenBonds, "SBs": calcSaltBridges, "RIB": calcRepulsiveIonicBonding, "PiStack": calcPiStacking, "PiCat": calcPiCation, "HPh": calcHydrophobic, "DiBs": calcDisulfideBonds } if not mapping_file: for bond_type, func in functions_dict.items(): for file in align_files: try: LOGGER.info(file) atoms = parsePDB(file) interactions = func(atoms.select('protein')) saveInteractionsAsDummyAtoms(atoms, interactions, filename=file.rstrip(file.split('/')[-1])+'INT_'+bond_type+'_'+file.split('/')[-1]) except: pass if mapping_file: # for MSA file (Foldseek) n_per_plot = kwargs.pop('n_per_plot', None) min_height = kwargs.pop('min_height', 8) # Process each bond type for bond_type, func in functions_dict.items(): # Check if the consensus file already exists consensus_file = '{}_consensus.txt'.format(bond_type) if os.path.exists(consensus_file): log_message("Consensus file for {} already exists, skipping.".format(bond_type), "INFO") continue log_message("Processing {}".format(bond_type)) result = process_data(mapping_file, PDB_folder, func, bond_type, files_for_analysis=align_files) # Check if the result is None (no valid bonds found) if result is None: log_message("No valid {} entries found, skipping further processing.".format(bond_type), "WARNING") continue result, fixed_files = result # Proceed with plotting plot_barh(result, bond_type, n_per_plot=n_per_plot, min_height=min_height)
[docs]class Interactions(object): """Class for Interaction analysis of proteins.""" def __init__(self, title='Unknown'): self._title = str(title).strip() self._atoms = None self._interactions = None self._interactions_matrix = None self._interactions_matrix_en = None self._energy_type = None self._hbs = None self._sbs = None self._rib = None self._piStack = None self._piCat = None self._hps = None self._dibs = None #super(Interactions, self).__init__(name)
[docs] def setTitle(self, title): """Set title of the model.""" self._title = str(title)
[docs] def calcProteinInteractions(self, atoms, **kwargs): """Compute all protein interactions (shown below) using default parameters. (1) Hydrogen bonds (2) Salt Bridges (3) RepulsiveIonicBonding (4) Pi stacking interactions (5) Pi-cation interactions (6) Hydrophobic interactions (7) Disulfide Bonds :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') LOGGER.info('Calculating interations.') HBs_calculations = calcHydrogenBonds(atoms.protein, **kwargs) #1 in scoring SBs_calculations = calcSaltBridges(atoms.protein, **kwargs) #2 SameChargeResidues = calcRepulsiveIonicBonding(atoms.protein, **kwargs) #3 Pi_stacking = calcPiStacking(atoms.protein, **kwargs) #4 Pi_cation = calcPiCation(atoms.protein, **kwargs) #5 Hydroph_calculations = calcHydrophobic(atoms.protein, **kwargs) #6 Disulfide_Bonds = calcDisulfideBonds(atoms.protein, **kwargs) #7 AllInteractions = [HBs_calculations, SBs_calculations, SameChargeResidues, Pi_stacking, Pi_cation, Hydroph_calculations, Disulfide_Bonds] self._atoms = atoms self._interactions = AllInteractions self._hbs = HBs_calculations self._sbs = SBs_calculations self._rib = SameChargeResidues self._piStack = Pi_stacking self._piCat = Pi_cation self._hps = Hydroph_calculations self._dibs = Disulfide_Bonds return self._interactions
[docs] def getAtoms(self): """Returns associated atoms. """ return self._atoms
[docs] def getInteractions(self, **kwargs): """Returns the list of all interactions. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg replace: Used with selection criteria to set the new one If set to **True** the selection will be replaced by the new one. Default is **False** :type replace: bool Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ replace = kwargs.pop('replace', False) if len(kwargs) != 0: results = [filterInteractions(j, self._atoms, **kwargs) for j in self._interactions] if replace == True: LOGGER.info('New interactions are set') self._interactions = results self._hbs = results[0] self._sbs = results[1] self._rib = results[2] self._piStack = results[3] self._piCat = results[4] self._hps = results[5] self._dibs = results[6] else: results = self._interactions return results
[docs] def getHydrogenBonds(self, **kwargs): """Returns the list of hydrogen bonds. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._hbs, self._atoms, **kwargs) else: results = self._hbs return results
[docs] def getSaltBridges(self, **kwargs): """Returns the list of salt bridges. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._sbs, self._atoms, **kwargs) else: results = self._sbs return results
[docs] def getRepulsiveIonicBonding(self, **kwargs): """Returns the list of repulsive ionic bonding. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._rib, self._atoms, **kwargs) else: results = self._rib return results
[docs] def getPiStacking(self, **kwargs): """Returns the list of Pi-stacking interactions. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._piStack, self._atoms, **kwargs) else: results = self._piStack return results
[docs] def getPiCation(self, **kwargs): """Returns the list of Pi-cation interactions. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._piCat, self._atoms, **kwargs) else: results = self._piCat return results
[docs] def getHydrophobic(self, **kwargs): """Returns the list of hydrophobic interactions. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._hps, self._atoms, **kwargs) else: results = self._hps return results
[docs] def getDisulfideBonds(self, **kwargs): """Returns the list of disulfide bonds. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: results = filterInteractions(self._dibs, self._atoms, **kwargs) else: results = self._dibs return results
[docs] def setNewHydrogenBonds(self, interaction): """Replace default calculation of hydrogen bonds by the one provided by user.""" self._interactions[0] = interaction self._hbs = self._interactions[0] LOGGER.info('Hydrogen Bonds are replaced')
[docs] def setNewSaltBridges(self, interaction): """Replace default calculation of salt bridges by the one provided by user.""" self._interactions[1] = interaction self._sbs = self._interactions[1] LOGGER.info('Salt Bridges are replaced')
[docs] def setNewRepulsiveIonicBonding(self, interaction): """Replace default calculation of repulsive ionic bonding by the one provided by user.""" self._interactions[2] = interaction self._rib = self._interactions[2] LOGGER.info('Repulsive Ionic Bonding are replaced')
[docs] def setNewPiStacking(self, interaction): """Replace default calculation of pi-stacking interactions by the one provided by user.""" self._interactions[3] = interaction self._piStack = self._interactions[3] LOGGER.info('Pi-Stacking interactions are replaced')
[docs] def setNewPiCation(self, interaction): """Replace default calculation of pi-cation interactions by the one provided by user.""" self._interactions[4] = interaction self._piCat = self._interactions[4] LOGGER.info('Pi-Cation interactions are replaced')
[docs] def setNewHydrophobic(self, interaction): """Replace default calculation of hydrophobic interactions by the one provided by user.""" self._interactions[5] = interaction self._hps = self._interactions[5] LOGGER.info('Hydrophobic interactions are replaced')
[docs] def setNewDisulfideBonds(self, interaction): """Replace default calculation of hydrophobic interactions by the one provided by user.""" self._interactions[6] = interaction self._dibs = self._interactions[6] LOGGER.info('Disulfide bonds are replaced')
[docs] def buildInteractionMatrix(self, **kwargs): """Build matrix with protein interactions. Interactions are counted as follows: (1) Hydrogen bonds (HBs) +1 (2) Salt Bridges (SBs) +1 (Salt bridges might be included in hydrogen bonds) (3) Repulsive Ionic Bonding (RIB) +1 (4) Pi stacking interactions (PiStack) +1 (5) Pi-cation interactions (PiCat) +1 (6) Hydrophobic interactions (HPh) +1 (7) Disulfide bonds (DiBs) +1 Some type of interactions could be removed from the analysis by replacing value 1 by 0. Example: >>> interactions = Interactions() >>> atoms = parsePDB(PDBfile).select('protein') >>> interactions.calcProteinInteractions(atoms) >>> interactions.buildInteractionMatrix(RIB=0, HBs=0, HPh=0) :arg HBs: score per single hydrogen bond :type HBs: int, float :arg SBs: score per single salt bridge :type SBs: int, float :arg RIB: score per single repulsive ionic bonding :type RIB: int, float :arg PiStack: score per pi-stacking interaction :type PiStack: int, float :arg PiCat: score per pi-cation interaction :type PiCat: int, float :arg HPh: score per hydrophobic interaction :type HPh: int, float :arg DiBs: score per disulfide bond :type DiBs: int, float """ atoms = self._atoms interactions = self._interactions LOGGER.info('Calculating interaction matrix') InteractionsMap = np.zeros([atoms.select('name CA').numAtoms(),atoms.select('name CA').numAtoms()]) resIDs = list(atoms.select('name CA').getResnums()) resChIDs = list(atoms.select('name CA').getChids()) resIDs_with_resChIDs = list(zip(resIDs, resChIDs)) dic_interactions = {'HBs':'Hydrogen Bonds', 'SBs':'Salt Bridges', 'RIB':'Repulsive Ionic Bonding', 'PiStack':'Pi-stacking interactions', 'PiCat':'Pi-cation interactions', 'HPh':'Hydrophobic interactions', 'DiBs':'Disulfide Bonds'} if not 'HBs' in kwargs: kwargs['HBs'] = 1 if not 'SBs' in kwargs: kwargs['SBs'] = 1 if not 'RIB' in kwargs: kwargs['RIB'] = 1 if not 'PiStack' in kwargs: kwargs['PiStack'] = 1 if not 'PiCat' in kwargs: kwargs['PiCat'] = 1 if not 'HPh' in kwargs: kwargs['HPh'] = 1 if not 'DiBs' in kwargs: kwargs['DiBs'] = 1 scoring = [kwargs['HBs'], kwargs['SBs'], kwargs['RIB'], kwargs['PiStack'], kwargs['PiCat'], kwargs['HPh'], kwargs['DiBs']] if all(x in [0, 1] for x in scoring): pass else: LOGGER.info('Following scores will be used:') for key,value in kwargs.items(): LOGGER.info('{0} = {1}'.format(dic_interactions[key], value)) for nr_i,i in enumerate(interactions): if i != []: for ii in i: m1 = resIDs_with_resChIDs.index((int(ii[0][3:]),ii[2])) m2 = resIDs_with_resChIDs.index((int(ii[3][3:]),ii[5])) InteractionsMap[m1][m2] = InteractionsMap[m2][m1] = InteractionsMap[m1][m2] + scoring[nr_i] self._interactions_matrix = InteractionsMap return InteractionsMap
[docs] def buildInteractionMatrixEnergy(self, **kwargs): """Build matrix with interaction energy comming from energy of pairs of specific residues. :arg energy_list_type: name of the list with energies Default is 'IB_solv' acceptable values are 'IB_nosolv', 'IB_solv', 'CS' :type energy_list_type: str 'IB_solv' and 'IB_nosolv' are derived from empirical potentials from O Keskin, I Bahar and colleagues from [OK98]_ and have RT units. 'CS' is from MD simulations of amino acid pairs from Carlos Simmerling and Gary Wu in the InSty paper (under preparation) and have units of kcal/mol. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from prody.dynamics.plotting import pplot atoms = self._atoms interactions = self._interactions energy_list_type = kwargs.pop('energy_list_type', 'IB_solv') LOGGER.info('Calculating interaction energies matrix with type {0}'.format(energy_list_type)) InteractionsMap = np.zeros([atoms.select('name CA').numAtoms(),atoms.select('name CA').numAtoms()]) resIDs = list(atoms.select('name CA').getResnums()) resChIDs = list(atoms.select('name CA').getChids()) resIDs_with_resChIDs = list(zip(resIDs, resChIDs)) for i in interactions: if i != []: for ii in i: m1 = resIDs_with_resChIDs.index((int(ii[0][3:]),ii[2])) m2 = resIDs_with_resChIDs.index((int(ii[3][3:]),ii[5])) scoring = get_energy([ii[0][:3], ii[3][:3]], energy_list_type) if InteractionsMap[m1][m2] == 0: InteractionsMap[m1][m2] = InteractionsMap[m2][m1] = float(scoring) self._interactions_matrix_en = InteractionsMap self._energy_type = energy_list_type return InteractionsMap
[docs] def showInteractors(self, **kwargs): """Display protein residues and their number of potential interactions with other residues from protein structure. """ import numpy as np import matplotlib import matplotlib.pylab as plt from prody.dynamics.plotting import showAtomicLines if not hasattr(self, '_interactions_matrix') or self._interactions_matrix is None: raise ValueError('Please calculate interactions matrix first') interaction_matrix = self._interactions_matrix atoms = self._atoms freq_contacts_residues = np.sum(interaction_matrix, axis=0) ResNumb = atoms.select('protein and name CA').getResnums() ResName = atoms.select('protein and name CA').getResnames() ResChid = atoms.select('protein and name CA').getChids() ResList = [ i[0]+str(i[1])+i[2] for i in list(zip(ResName, ResNumb, ResChid)) ] if SETTINGS['auto_show']: matplotlib.rcParams['font.size'] = '20' fig = plt.figure(num=None, figsize=(12,6), facecolor='w') show = showAtomicLines(freq_contacts_residues, atoms=atoms.select('name CA'), **kwargs) plt.ylabel('Score of interactions') plt.xlabel('Residue') plt.tight_layout() if SETTINGS['auto_show']: showFigure() return show
[docs] def saveInteractionsPDB(self, **kwargs): """Save the number of potential interactions to PDB file in occupancy column. :arg filename: name of the PDB file which will be saved for visualization, it will contain the results in occupancy column. :type filename: str :arg energy: sum of the energy between residues default is False :type energy: bool """ energy = kwargs.pop('energy', False) if not hasattr(self, '_interactions_matrix') or self._interactions_matrix is None: raise ValueError('Please calculate interactions matrix first.') if not isinstance(energy, bool): raise TypeError('energy should be True or False') import numpy as np from collections import Counter atoms = self._atoms interaction_matrix = self._interactions_matrix interaction_matrix_en = self._interactions_matrix_en atoms = atoms.select("protein and noh") lista_ext = [] aa_counter = Counter(atoms.getResindices()) calphas = atoms.select('name CA') for i in range(calphas.numAtoms()): if energy == True: matrix_en_sum = np.sum(interaction_matrix_en, axis=0) lista_ext.extend(list(aa_counter.values())[i]*[round(matrix_en_sum[i], 8)]) else: freq_contacts_residues = np.sum(interaction_matrix, axis=0) lista_ext.extend(list(aa_counter.values())[i]*[round(freq_contacts_residues[i], 8)]) kw = {'occupancy': lista_ext} if 'filename' in kwargs: writePDB(kwargs['filename'], atoms, **kw) LOGGER.info('PDB file saved.') else: writePDB('filename', atoms, **kw) LOGGER.info('PDB file saved.')
[docs] def getInteractors(self, residue_name): """ Provide information about interactions for a particular residue :arg residue_name: name of a resiude example: LEU234A, where A is a chain name :type residue_name: str """ atoms = self._atoms interactions = self._interactions InteractionsMap = np.empty([atoms.select('name CA').numAtoms(),atoms.select('name CA').numAtoms()], dtype=object) resIDs = list(atoms.select('name CA').getResnums()) resChIDs = list(atoms.select('name CA').getChids()) resIDs_with_resChIDs = list(zip(resIDs, resChIDs)) interaction_type = ['hb','sb','rb','ps','pc','hp','dibs'] ListOfInteractions = [] for nr,i in enumerate(interactions): if i != []: for ii in i: m1 = resIDs_with_resChIDs.index((int(ii[0][3:]),ii[2])) m2 = resIDs_with_resChIDs.index((int(ii[3][3:]),ii[5])) ListOfInteractions.append(interaction_type[nr]+':'+ii[0]+ii[2]+'-'+ii[3]+ii[5]) aa_ListOfInteractions = [] for i in ListOfInteractions: inter = i.split(":")[1:][0] if inter.split('-')[0] == residue_name or inter.split('-')[1] == residue_name: LOGGER.info(i) aa_ListOfInteractions.append(i) return aa_ListOfInteractions
[docs] def getFrequentInteractors(self, contacts_min=2): """Provide a list of residues with the most frequent interactions based on the following interactions: (1) Hydrogen bonds (hb) (2) Salt Bridges (sb) (3) Repulsive Ionic Bonding (rb) (4) Pi stacking interactions (ps) (5) Pi-cation interactions (pc) (6) Hydrophobic interactions (hp) (7) Disulfide bonds (disb) :arg contacts_min: Minimal number of contacts which residue may form with other residues, Default is 2. :type contacts_min: int """ atoms = self._atoms interactions = self._interactions InteractionsMap = np.empty([atoms.select('name CA').numAtoms(),atoms.select('name CA').numAtoms()], dtype=object) resIDs = list(atoms.select('name CA').getResnums()) resChIDs = list(atoms.select('name CA').getChids()) resIDs_with_resChIDs = list(zip(resIDs, resChIDs)) interaction_type = ['hb','sb','rb','ps','pc','hp','dibs'] for nr,i in enumerate(interactions): if i != []: for ii in i: m1 = resIDs_with_resChIDs.index((int(ii[0][3:]),ii[2])) m2 = resIDs_with_resChIDs.index((int(ii[3][3:]),ii[5])) if InteractionsMap[m1][m2] is None: InteractionsMap[m1][m2] = [] InteractionsMap[m1][m2].append(interaction_type[nr] + ':' + ii[0] + ii[2] + '-' + ii[3] + ii[5]) ListOfInteractions = [list(filter(None, [row[j] for row in InteractionsMap])) for j in range(len(InteractionsMap[0]))] ListOfInteractions = list(filter(lambda x: x != [], ListOfInteractions)) ListOfInteractions_flattened = [j for sublist in ListOfInteractions for j in sublist] swapped_ListOfInteractions_list = [] for interaction_group in ListOfInteractions_flattened: swapped_group = [] for interaction in interaction_group: interaction_type, pair = interaction.split(':') swapped_pair = '-'.join(pair.split('-')[::-1]) swapped_group.append("{}:{}".format(interaction_type, swapped_pair)) swapped_ListOfInteractions_list.append(swapped_group) doubleListOfInteractions_list = ListOfInteractions_flattened+swapped_ListOfInteractions_list ListOfInteractions_list = [(i[0].split('-')[-1], [j.split('-')[0] for j in i]) for i in doubleListOfInteractions_list] merged_dict = {} for aa, ii in ListOfInteractions_list: if aa in merged_dict: merged_dict[aa].extend(ii) else: merged_dict[aa] = ii ListOfInteractions_list = [(key, value) for key, value in merged_dict.items()] ListOfInteractions_list2 = [k for k in ListOfInteractions_list if len(k[-1]) >= contacts_min] for res in ListOfInteractions_list2: LOGGER.info('{0} <---> {1}'.format(res[0], ' '.join(res[1]))) LOGGER.info('\nLegend: hb-hydrogen bond, sb-salt bridge, rb-repulsive ionic bond, ps-Pi stacking interaction,' '\npc-Cation-Pi interaction, hp-hydrophobic interaction, dibs-disulfide bonds') try: from toolz.curried import count except ImportError: LOGGER.warn('This function requires the module toolz') return return ListOfInteractions_list2
[docs] def showFrequentInteractors(self, cutoff=4, **kwargs): """Plots regions with the most frequent interactions. :arg cutoff: minimal score per residue which will be displayed. If cutoff value is too big, top 30% with the higest values will be returned. Default is 4. :type cutoff: int, float Nonstandard resiudes can be updated in a following way: d = {'CYX': 'X', 'CEA': 'Z'} >>> name.showFrequentInteractors(d) """ if not hasattr(self, '_interactions_matrix') or self._interactions_matrix is None: raise ValueError('Please calculate interactions matrix first') import numpy as np import matplotlib import matplotlib.pyplot as plt atoms = self._atoms interaction_matrix = self._interactions_matrix aa_dic = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M', 'HSE': 'H', 'HSD': 'H'} for key, value in kwargs.items(): aa_dict[key] = value freq_contacts_residues = np.sum(interaction_matrix, axis=0) ResNumb = atoms.select('protein and name CA').getResnums() ResName = atoms.select('protein and name CA').getResnames() ResChid = atoms.select('protein and name CA').getChids() ResList = [ i[0]+str(i[1])+i[2] for i in list(zip(ResName, ResNumb, ResChid)) ] all_y = [ aa_dic[i[:3]]+i[3:] for i in ResList] if cutoff > np.max(freq_contacts_residues): cutoff = round(np.max(freq_contacts_residues)*0.7) y = [] x = [] for nr_ii, ii in enumerate(freq_contacts_residues): if ii >= cutoff: x.append(ii) y.append(all_y[nr_ii]) if SETTINGS['auto_show']: matplotlib.rcParams['font.size'] = '12' fig = plt.figure(num=None, figsize=(16,5), facecolor='w') y_pos = np.arange(len(y)) show = plt.bar(y_pos, x, align='center', alpha=0.5, color='blue') plt.xticks(y_pos, y, rotation=45, fontsize=16) plt.ylabel('Number of interactions', fontsize=16) plt.tight_layout() if SETTINGS['auto_show']: showFigure() dict_counts = dict(zip(y, x)) dict_counts_sorted = dict(sorted(dict_counts.items(), key=lambda item: item[1], reverse=True)) return dict_counts_sorted
[docs] def showCumulativeInteractionTypes(self, **kwargs): """Bar plot with the number of potential inetractions per residue. Particular type of interactions can be excluded by using keywords HBs=0, RIB=0, etc. :arg HBs: score per single hydrogen bond :type HBs: int, float :arg SBs: score per single salt bridge :type SBs: int, float :arg RIB: score per single repulsive ionic bonding :type RIB: int, float :arg PiStack: score per pi-stacking interaction :type PiStack: int, float :arg PiCat: score per pi-cation interaction :type PiCat: int, float :arg HPh: score per hydrophobic interaction :type HPh: int, float :arg DiBs: score per disulfide bond :type DiBs: int, float :arg selstr: selection string for focusing the plot :type selection: str :arg energy: sum of the energy between residues default is False :type energy: bool :arg energy_list_type: name of the list with energies default is 'IB_solv' acceptable values are 'IB_nosolv', 'IB_solv', 'CS' :type energy_list_type: str :arg overwrite_energies: whether to overwrite energies default is False :type overwrite_energies: bool :arg percentile: a percentile threshold to remove outliers, i.e. only showing data within *p*-th to *100-p*-th percentile. Default is None, so no axis limits. :type percentile: float :arg vmin: a minimum value threshold to remove outliers, i.e. only showing data greater than vmin This overrides percentile. Default is None, so no axis limits and little padding at the bottom when energy=True. :type vmin: float :arg vmax: a maximum value threshold to remove outliers, i.e. only showing data less than vmax This overrides percentile. Default is None, so no axis limits and a little padding for interaction type labels. :type vmax: float 'IB_solv' and 'IB_nosolv' are derived from empirical potentials from O Keskin, I Bahar and colleagues from [OK98]_ and have RT units. 'CS' is from MD simulations of amino acid pairs from Carlos Simmerling and Gary Wu for the InSty paper (under preparation) and have units kcal/mol. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from prody.dynamics.plotting import pplot aa_dic = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M', 'HSE': 'H', 'HSD': 'H'} atoms = self._atoms energy = kwargs.pop('energy', False) if not isinstance(energy, bool): raise TypeError('energy should be True or False') p = kwargs.pop('percentile', None) vmin = vmax = None if p is not None: vmin = np.percentile(matrix, p) vmax = np.percentile(matrix, 100-p) vmin = kwargs.pop('vmin', vmin) vmax = kwargs.pop('vmax', vmax) selstr = kwargs.pop('selstr', None) if selstr is not None: atoms = atoms.select(selstr) ResNumb = atoms.select('protein and name CA').getResnums() ResName = atoms.select('protein and name CA').getResnames() ResChid = atoms.select('protein and name CA').getChids() ResList = [ i[0]+str(i[1])+i[2] for i in list(zip([ aa_dic[i] for i in ResName ], ResNumb, ResChid)) ] if energy == True: matrix_en = self._interactions_matrix_en energy_list_type = kwargs.pop('energy_list_type', 'IB_solv') overwrite = kwargs.pop('overwrite_energies', False) if matrix_en is None or overwrite: LOGGER.warn('The energy matrix is recalculated with type {0}'.format(energy_list_type)) self.buildInteractionMatrixEnergy(energy_list_type=energy_list_type) matrix_en = self._interactions_matrix_en elif self._energy_type != energy_list_type: LOGGER.warn('The energy type is {0}, not {1}'.format(self._energy_type, energy_list_type)) matrix_en_sum = np.sum(matrix_en, axis=0) width = 0.8 fig, ax = plt.subplots(num=None, figsize=(20,6), facecolor='w') matplotlib.rcParams['font.size'] = '24' if selstr is not None: matrix_en_sum = sliceAtomicData(matrix_en_sum, self._atoms.ca, selstr) zeros_row = np.zeros(matrix_en_sum.shape) pplot(zeros_row, atoms=atoms.ca, **kwargs) ax.bar(ResList, matrix_en_sum, width, color='blue') if vmin is None: vmin = np.min(matrix_en_sum) * 1.2 if vmax is None: vmax = np.max(matrix_en_sum) plt.ylim([vmin, vmax]) plt.tight_layout() plt.xlabel('Residue') unit = 'RT' if energy_list_type in ['IB_solv', 'IB_nosolv'] else 'kcal/mol' plt.ylabel('Cumulative Energy [{0}]'.format(unit)) plt.show() return matrix_en_sum else: replace_matrix = kwargs.get('replace_matrix', False) matrix_all = self._interactions_matrix HBs = kwargs.get('HBs', 1) SBs = kwargs.get('SBs', 1) RIB = kwargs.get('RIB', 1) PiStack = kwargs.get('PiStack', 1) PiCat = kwargs.get('PiCat', 1) HPh = kwargs.get('HPh', 1) DiBs = kwargs.get('DiBs', 1) matrix_hbs = self.buildInteractionMatrix(HBs=HBs, SBs=0, RIB=0,PiStack=0,PiCat=0,HPh=0,DiBs=0) matrix_sbs = self.buildInteractionMatrix(HBs=0, SBs=SBs, RIB=0,PiStack=0,PiCat=0,HPh=0,DiBs=0) matrix_rib = self.buildInteractionMatrix(HBs=0, SBs=0, RIB=RIB,PiStack=0,PiCat=0,HPh=0,DiBs=0) matrix_pistack = self.buildInteractionMatrix(HBs=0, SBs=0, RIB=0,PiStack=PiStack,PiCat=0,HPh=0,DiBs=0) matrix_picat = self.buildInteractionMatrix(HBs=0, SBs=0, RIB=0,PiStack=0,PiCat=PiCat,HPh=0,DiBs=0) matrix_hph = self.buildInteractionMatrix(HBs=0, SBs=0, RIB=0,PiStack=0,PiCat=0,HPh=HPh,DiBs=0) matrix_dibs = self.buildInteractionMatrix(HBs=0, SBs=0, RIB=0,PiStack=0,PiCat=0,HPh=0,DiBs=DiBs) matrix_hbs_sum = np.sum(matrix_hbs, axis=0) matrix_sbs_sum = np.sum(matrix_sbs, axis=0) matrix_rib_sum = np.sum(matrix_rib, axis=0) matrix_pistack_sum = np.sum(matrix_pistack, axis=0) matrix_picat_sum = np.sum(matrix_picat, axis=0) matrix_hph_sum = np.sum(matrix_hph, axis=0) matrix_dibs_sum = np.sum(matrix_dibs, axis=0) all_ca = self._atoms.ca if selstr is not None: matrix_hbs_sum = sliceAtomicData(matrix_hbs_sum, all_ca, selstr) matrix_sbs_sum = sliceAtomicData(matrix_sbs_sum, all_ca, selstr) matrix_rib_sum = sliceAtomicData(matrix_rib_sum, all_ca, selstr) matrix_pistack_sum = sliceAtomicData(matrix_pistack_sum, all_ca, selstr) matrix_picat_sum = sliceAtomicData(matrix_picat_sum, all_ca, selstr) matrix_hph_sum = sliceAtomicData(matrix_hph_sum, all_ca, selstr) matrix_dibs_sum = sliceAtomicData(matrix_dibs_sum, all_ca, selstr) width = 0.8 fig, ax = plt.subplots(num=None, figsize=(20,6), facecolor='w') matplotlib.rcParams['font.size'] = '24' sum_matrix = np.zeros(matrix_hbs_sum.shape) pplot(sum_matrix, atoms=atoms.ca) if HBs != 0: ax.bar(ResList, matrix_hbs_sum, width, color = 'blue', bottom = 0, label='HBs') sum_matrix += matrix_hbs_sum if SBs != 0: ax.bar(ResList, matrix_sbs_sum, width, color = 'yellow', bottom = sum_matrix, label='SBs') sum_matrix += matrix_sbs_sum if HPh != 0: ax.bar(ResList, matrix_hph_sum, width, color = 'silver', bottom = sum_matrix, label='HPh') sum_matrix += matrix_hph_sum if RIB != 0: ax.bar(ResList, matrix_rib_sum, width, color = 'red', bottom = sum_matrix, label='RIB') sum_matrix += matrix_rib_sum if PiStack != 0: ax.bar(ResList, matrix_pistack_sum, width, color = 'green', bottom = sum_matrix, label='PiStack') sum_matrix += matrix_pistack_sum if PiCat != 0: ax.bar(ResList, matrix_picat_sum, width, color = 'orange', bottom = sum_matrix, label='PiCat') sum_matrix += matrix_picat_sum if DiBs != 0: ax.bar(ResList, matrix_dibs_sum, width, color = 'black', bottom = sum_matrix, label='DiBs') sum_matrix += matrix_dibs_sum if replace_matrix: self._interactions_matrix = np.sum([matrix_hbs, matrix_sbs, matrix_rib, matrix_pistack, matrix_picat, matrix_hph, matrix_dibs], axis=0) else: self._interactions_matrix = matrix_all ax.legend(ncol=7, loc='upper center') if vmin is None: vmin = np.min(sum_matrix) if vmax is None: vmax = np.max(sum_matrix) * 1.5 plt.ylim([vmin, vmax]) plt.tight_layout() plt.xlabel('Residue') plt.ylabel('Number of counts') return matrix_hbs_sum, matrix_sbs_sum, matrix_rib_sum, matrix_pistack_sum, matrix_picat_sum, matrix_hph_sum, matrix_dibs_sum
[docs]class InteractionsTrajectory(object): """Class for Interaction analysis of DCD trajectory or multi-model PDB (Ensemble PDB).""" def __init__(self, name='Unknown'): self._atoms = None self._traj = None self._interactions_traj = None self._interactions_nb_traj = None self._interactions_matrix_traj = None self._hbs_traj = None self._sbs_traj = None self._rib_traj = None self._piStack_traj = None self._piCat_traj = None self._hps_traj = None self._dibs_traj = None
[docs] def calcProteinInteractionsTrajectory(self, atoms, trajectory=None, filename=None, **kwargs): """Compute all protein interactions (shown below) for DCD trajectory or multi-model PDB using default parameters. (1) Hydrogen bonds (2) Salt Bridges (3) RepulsiveIonicBonding (4) Pi stacking interactions (5) Pi-cation interactions (6) Hydrophobic interactions (7) Disulfide Bonds :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg filename: Name of pkl filename in which interactions will be storage :type filename: pkl :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int :arg max_proc: maximum number of processes to use default is half of the number of CPUs :type max_proc: int Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') HBs_all = [] SBs_all = [] RIB_all = [] PiStack_all = [] PiCat_all = [] HPh_all = [] DiBs_all = [] HBs_nb = [] SBs_nb = [] RIB_nb = [] PiStack_nb = [] PiCat_nb = [] HPh_nb = [] DiBs_nb = [] interactions_traj = [HBs_all, SBs_all, RIB_all, PiStack_all, PiCat_all, HPh_all, DiBs_all] interactions_nb_traj = [HBs_nb, SBs_nb, RIB_nb, PiStack_nb, PiCat_nb, HPh_nb, DiBs_nb] start_frame = kwargs.pop('start_frame', 0) stop_frame = kwargs.pop('stop_frame', -1) max_proc = kwargs.pop('max_proc', mp.cpu_count()//2) if trajectory is None: if atoms.numCoordsets() > 1: trajectory = atoms else: LOGGER.info('Include trajectory or use multi-model PDB file.') return interactions_nb_traj if isinstance(trajectory, Atomic): trajectory = Ensemble(trajectory) if isinstance(trajectory, Trajectory): nfi = trajectory._nfi trajectory.reset() numFrames = trajectory._n_csets if stop_frame == -1: traj = trajectory[start_frame:] else: traj = trajectory[start_frame:stop_frame+1] atoms_copy = atoms.copy() protein = atoms_copy.protein def analyseFrame(j0, frame0, interactions_all, interactions_nb, j0_list): LOGGER.info('Frame: {0}'.format(j0)) atoms_copy.setCoords(frame0.getCoords()) hydrogen_bonds = calcHydrogenBonds(protein, **kwargs) salt_bridges = calcSaltBridges(protein, **kwargs) RepulsiveIonicBonding = calcRepulsiveIonicBonding(protein, **kwargs) Pi_stacking = calcPiStacking(protein, **kwargs) Pi_cation = calcPiCation(protein, **kwargs) hydrophobic = calcHydrophobic(protein, **kwargs) Disulfide_Bonds = calcDisulfideBonds(protein, **kwargs) interactions_all[0].append(hydrogen_bonds) interactions_all[1].append(salt_bridges) interactions_all[2].append(RepulsiveIonicBonding) interactions_all[3].append(Pi_stacking) interactions_all[4].append(Pi_cation) interactions_all[5].append(hydrophobic) interactions_all[6].append(Disulfide_Bonds) interactions_nb[0].append(len(hydrogen_bonds)) interactions_nb[1].append(len(salt_bridges)) interactions_nb[2].append(len(RepulsiveIonicBonding)) interactions_nb[3].append(len(Pi_stacking)) interactions_nb[4].append(len(Pi_cation)) interactions_nb[5].append(len(hydrophobic)) interactions_nb[6].append(len(Disulfide_Bonds)) j0_list.append(j0) if max_proc == 1: interactions_all = [] interactions_all.extend(interactions_traj) interactions_nb = [] interactions_nb.extend(interactions_nb_traj) j0_list = [] for j0, frame0 in enumerate(traj, start=start_frame): analyseFrame(j0, frame0, interactions_all, interactions_nb, j0_list) else: with mp.Manager() as manager: interactions_all = manager.list() interactions_all.extend([manager.list() for _ in interactions_traj]) interactions_nb = manager.list() interactions_nb.extend([manager.list() for _ in interactions_nb_traj]) j0 = start_frame j0_list = manager.list() while j0 < traj.numConfs()+start_frame: processes = [] for _ in range(max_proc): frame0 = traj[j0-start_frame] p = mp.Process(target=analyseFrame, args=(j0, frame0, interactions_all, interactions_nb, j0_list)) p.start() processes.append(p) j0 += 1 if j0 >= traj.numConfs()+start_frame: break for p in processes: p.join() interactions_all = [entry[:] for entry in interactions_all] interactions_nb = [entry[:] for entry in interactions_nb] j0_list = [entry for entry in j0_list] ids = np.argsort(j0_list) interactions_all = [list(np.array(interactions_type, dtype=object)[ids]) for interactions_type in interactions_all] interactions_nb = [list(np.array(interactions_type, dtype=object)[ids]) for interactions_type in interactions_nb] self._atoms = atoms self._traj = trajectory self._interactions_traj = interactions_all self._interactions_nb_traj = interactions_nb self._hbs_traj = interactions_all[0] self._sbs_traj = interactions_all[1] self._rib_traj = interactions_all[2] self._piStack_traj = interactions_all[3] self._piCat_traj = interactions_all[4] self._hps_traj = interactions_all[5] self._dibs_traj = interactions_all[6] if filename is not None: import pickle with open(str(filename)+'.pkl', 'wb') as f: pickle.dump(self._interactions_traj, f) LOGGER.info('File with interactions saved.') if isinstance(trajectory, Trajectory): trajectory._nfi = nfi return interactions_nb
[docs] def getInteractions(self, **kwargs): """Return the list of all interactions. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str :arg replace: Used with selection criteria to set the new one If set to **True** the selection will be replaced by the new one. Default is **False** :type replace: bool Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ replace = kwargs.pop('replace', False) if len(kwargs) != 0: sele_inter = [] for i in self._interactions_traj: for nr_j,j in enumerate(i): sele_inter.append(filterInteractions(i[nr_j], self._atoms, **kwargs)) if replace == True: try: trajectory = self._traj numFrames = trajectory._n_csets except: # If we analyze previously saved PKL file it doesn't have dcd information # We have seven type of interactions. It will give number of frames. numFrames = int(len(sele_inter)/7) self._interactions_traj = sele_inter self._hbs_traj = sele_inter[0:numFrames] self._sbs_traj = sele_inter[numFrames:2*numFrames] self._rib_traj = sele_inter[2*numFrames:3*numFrames] self._piStack_traj = sele_inter[3*numFrames:4*numFrames] self._piCat_traj = sele_inter[4*numFrames:5*numFrames] self._hps_traj = sele_inter[5*numFrames:6*numFrames] self._dibs_traj = sele_inter[6*numFrames:7*numFrames] LOGGER.info('New interactions are set') self._interactions_nb_traj = None self._interactions_matrix_traj = None new_interactions_nb_traj = [] new_interactions_nb_traj.append([ len(i) for i in self._hbs_traj ]) new_interactions_nb_traj.append([ len(i) for i in self._sbs_traj ]) new_interactions_nb_traj.append([ len(i) for i in self._rib_traj ]) new_interactions_nb_traj.append([ len(i) for i in self._piStack_traj ]) new_interactions_nb_traj.append([ len(i) for i in self._piCat_traj ]) new_interactions_nb_traj.append([ len(i) for i in self._hps_traj ]) new_interactions_nb_traj.append([ len(i) for i in self._dibs_traj ]) self._interactions_nb_traj = new_interactions_nb_traj results = sele_inter else: results = self._interactions_traj return results
[docs] def getAtoms(self): """Returns associated atoms.""" return self._atoms
[docs] def getInteractionsNumber(self): """Return the number of interactions in each frame.""" return self._interactions_nb_traj
[docs] def getHydrogenBonds(self, **kwargs): """Return the list of hydrogen bonds computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._hbs_traj): sele_inter.append(filterInteractions(self._hbs_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._hbs_traj return results
[docs] def getSaltBridges(self, **kwargs): """Return the list of salt bridges computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._sbs_traj): sele_inter.append(filterInteractions(self._sbs_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._sbs_traj return results
[docs] def getRepulsiveIonicBonding(self, **kwargs): """Return the list of repulsive ionic bonding computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._rib_traj): sele_inter.append(filterInteractions(self._rib_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._rib_traj return results
[docs] def getPiStacking(self, **kwargs): """Return the list of Pi-stacking interactions computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._piStack_traj): sele_inter.append(filterInteractions(self._piStack_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._piStack_traj return results
[docs] def getPiCation(self, **kwargs): """Return the list of Pi-cation interactions computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._piCat_traj): sele_inter.append(filterInteractions(self._piCat_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._piCat_traj return results
[docs] def getHydrophobic(self, **kwargs): """Return the list of hydrophobic interactions computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._hps_traj): sele_inter.append(filterInteractions(self._hps_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._hps_traj return results
[docs] def getDisulfideBonds(self, **kwargs): """Return the list of disulfide bonds computed from DCD trajectory. :arg selection: selection string :type selection: str :arg selection2: selection string :type selection2: str Selection: If we want to select interactions for the particular residue or group of residues: selection='chain A and resid 1 to 50' If we want to study chain-chain interactions: selection='chain A', selection2='chain B' """ if len(kwargs) != 0: sele_inter = [] for nr_i,i in enumerate(self._dibs_traj): sele_inter.append(filterInteractions(self._dibs_traj[nr_i], self._atoms, **kwargs)) results = sele_inter else: results = self._dibs_traj return results
[docs] def setNewHydrogenBondsTrajectory(self, interaction): """Replace default calculation of hydrogen bonds by the one provided by user.""" self._interactions_traj[0] = interaction self._hbs_traj = self._interactions_traj[0] self._interactions_nb_traj[0] = [ len(i) for i in interaction ] LOGGER.info('Hydrogen Bonds are replaced')
[docs] def setNewSaltBridgesTrajectory(self, interaction): """Replace default calculation of salt bridges by the one provided by user.""" self._interactions_traj[1] = interaction self._sbs_traj = self._interactions_traj[1] self._interactions_nb_traj[1] = [ len(i) for i in interaction ] LOGGER.info('Salt Bridges are replaced')
[docs] def setNewRepulsiveIonicBondingTrajectory(self, interaction): """Replace default calculation of repulsive ionic bonding by the one provided by user. """ self._interactions_traj[2] = interaction self._rib_traj = self._interactions_traj[2] self._interactions_nb_traj[2] = [ len(i) for i in interaction ] LOGGER.info('Repulsive Ionic Bonding are replaced')
[docs] def setNewPiStackingTrajectory(self, interaction): """Replace default calculation of pi-stacking interactions by the one provided by user.""" self._interactions_traj[3] = interaction self._piStack_traj = self._interactions_traj[3] self._interactions_nb_traj[3] = [ len(i) for i in interaction ] LOGGER.info('Pi-Stacking interactions are replaced')
[docs] def setNewPiCationTrajectory(self, interaction): """Replace default calculation of pi-cation interactions by the one provided by user.""" self._interactions_traj[4] = interaction self._piCat_traj = self._interactions_traj[4] self._interactions_nb_traj[4] = [ len(i) for i in interaction ] LOGGER.info('Pi-Cation interactions are replaced')
[docs] def setNewHydrophobicTrajectory(self, interaction): """Replace default calculation of hydrophobic interactions by the one provided by user.""" self._interactions_traj[5] = interaction self._hps_traj = self._interactions_traj[5] self._interactions_nb_traj[5] = [ len(i) for i in interaction ] LOGGER.info('Hydrophobic interactions are replaced')
[docs] def setNewDisulfideBondsTrajectory(self, interaction): """Replace default calculation of disulfide bonds by the one provided by user.""" self._interactions_traj[6] = interaction self._dibs_traj = self._interactions_traj[6] self._interactions_nb_traj[6] = [ len(i) for i in interaction ] LOGGER.info('Disulfide bonds are replaced')
[docs] def parseInteractions(self, filename): """Import interactions from analysis of trajectory which was saved via calcProteinInteractionsTrajectory(). :arg filename: Name of pkl file in which interactions will be storage :type filename: pkl """ import pickle with open(filename, 'rb') as f: data = pickle.load(f) self._interactions_traj = data self._interactions_nb_traj = [[len(sublist) if sublist else 0 for sublist in sublist] for sublist in data] self._hbs_traj = data[0] self._sbs_traj = data[1] self._rib_traj = data[2] self._piStack_traj = data[3] self._piCat_traj = data[4] self._hps_traj = data[5] self._dibs_traj = data[6] return data
[docs] def getTimeInteractions(self, filename=None, **kwargs): """Return a bar plots with the number of interactions per each frame. :arg filename: PNG file name :type filename: str """ HBs = self._interactions_nb_traj[0] SBs = self._interactions_nb_traj[1] RIB = self._interactions_nb_traj[2] PiStack = self._interactions_nb_traj[3] PiCat = self._interactions_nb_traj[4] HPh = self._interactions_nb_traj[5] DiBs = self._interactions_nb_traj[6] import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.size'] = '20' data = [HBs, SBs, HPh, PiStack, PiCat, RIB, DiBs] colors = ['deepskyblue', 'yellow', 'silver', 'lightgreen', 'orange', 'red', 'black'] labels = ['HBs', 'SBs', 'HPh', 'PiStack', 'PiCat', 'RIB', 'DiBs'] # Removing empty interaction plots data_filtered = [] colors_filtered = [] labels_filtered = [] for i, lst in enumerate(data): if any(lst): data_filtered.append(lst) colors_filtered.append(colors[i]) labels_filtered.append(labels[i]) data = data_filtered colors = colors_filtered labels = labels_filtered fig, axes = plt.subplots(len(data), num=None, figsize=(12, 8), facecolor='w', sharex='all', **kwargs) hspace = 0.1 plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.35) last_nonempty = None for i, ax in enumerate(axes): if any(data[i]): last_nonempty = i rects = ax.bar(np.arange(len(data[i])), data[i], color=colors[i]) ax.plot(data[i], 'k:') data_min = min(data[i]) data_max = max(data[i]) if data_max > 15: ax.set_ylim(data_min - 1, data_max + 1) else: pass if i != len(data) - 1: ax.set_xlabel('') else: ax.axis('off') axes[last_nonempty].set_xlabel('Conformation') handles = [] for i in range(len(data)): if any(data[i]): handles.append(matplotlib.patches.Rectangle((0, 0), 0.6, 0.6, color=colors[i])) if handles: legend = fig.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=len(handles), prop={'size': 14}, handlelength=0.8) legend.set_title("Interactions") if filename is not None: plt.savefig(filename + '.png', dpi=300) plt.show() return HBs, SBs, HPh, PiStack, PiCat, HPh, DiBs
[docs]class LigandInteractionsTrajectory(object): """Class for protein-ligand interaction analysis of DCD trajectory or multi-model PDB (Ensemble PDB). This class is using PLIP to provide the interactions. Install PLIP before using it. ## Instalation of PLIP using conda: >>> conda install -c conda-forge plip ## https://anaconda.org/conda-forge/plip # https://github.com/pharmai/plip/blob/master/DOCUMENTATION.md ## Instalation using PIP: >>> pip install plip .. [SS15] Salentin S., Schreiber S., Haupt V. J., Adasme M. F., Schroeder M. PLIP: fully automated protein–ligand interaction profiler *Nucl. Acids Res.* **2015** 43:W443-W447. """ def __init__(self, name='Unknown'): self._atoms = None self._traj = None self._interactions_traj = None self._freq_interactors = None
[docs] def calcLigandInteractionsTrajectory(self, atoms, trajectory=None, **kwargs): """Compute protein-ligand interactions for DCD trajectory or multi-model PDB using PLIP library. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg trajectory: trajectory file :type trajectory: class:`.Trajectory` :arg filename: Name of pkl filename in which interactions will be storage :type filename: pkl :arg start_frame: index of first frame to read :type start_frame: int :arg stop_frame: index of last frame to read :type stop_frame: int :arg output: parameter to print the interactions on the screen while analyzing the structure, use 'info'. :type output: bool """ try: coords = (atoms._getCoords() if hasattr(atoms, '_getCoords') else atoms.getCoords()) except AttributeError: try: checkCoords(coords) except TypeError: raise TypeError('coords must be an object ' 'with `getCoords` method') interactions_all = [] interactions_all_nb = [] start_frame = kwargs.pop('start_frame', 0) stop_frame = kwargs.pop('stop_frame', -1) output = kwargs.pop('output', False) filename = kwargs.pop('filename', None) if trajectory is not None: if isinstance(trajectory, Atomic): trajectory = Ensemble(trajectory) if isinstance(trajectory, Trajectory): nfi = trajectory._nfi trajectory.reset() numFrames = trajectory._n_csets if stop_frame == -1: traj = trajectory[start_frame:] else: traj = trajectory[start_frame:stop_frame+1] atoms_copy = atoms.copy() for j0, frame0 in enumerate(traj, start=start_frame): LOGGER.info(' ') LOGGER.info('Frame: {0}'.format(j0)) atoms_copy.setCoords(frame0.getCoords()) ligand_interactions, ligand = calcLigandInteractions(atoms_copy) ligs_per_frame_interactions = [] for ligs in ligand_interactions: LP_interactions = listLigandInteractions(ligs, output=output) ligs_per_frame_interactions.extend(LP_interactions) interactions_all.append(ligs_per_frame_interactions) interactions_all_nb.append(len(ligs_per_frame_interactions)) else: if atoms.numCoordsets() > 1: for i in range(len(atoms.getCoordsets()[start_frame:stop_frame+1])): LOGGER.info(' ') LOGGER.info('Model: {0}'.format(i+start_frame)) atoms.setACSIndex(i+start_frame) ligand_interactions, ligand = calcLigandInteractions(atoms) ligs_per_frame_interactions = [] for ligs in ligand_interactions: LP_interactions = listLigandInteractions(ligs, output=output) ligs_per_frame_interactions.extend(LP_interactions) interactions_all.append(ligs_per_frame_interactions) interactions_all_nb.append(len(ligs_per_frame_interactions)) else: LOGGER.info('Include trajectory or use multi-model PDB file.') self._atoms = atoms self._traj = trajectory self._interactions_traj = interactions_all self._interactions_nb_traj = interactions_all_nb if filename is not None: import pickle with open(str(filename)+'.pkl', 'wb') as f: pickle.dump(self._interactions_traj, f) LOGGER.info('File with interactions saved.') return interactions_all
[docs] def getLigandInteractions(self, **kwargs): """Return the list of protein-ligand interactions. :arg filters: selection string of ligand with chain ID or interaction type e.g. 'SBs' (HBs, SBs, HPh, PiStack, PiCat, HPh, watBridge) :type filters: str :arg include_frames: used with filters, it will leave selected keyword in orginal lists, if False it will collect selected interactions in one list, Use True to assign new selection using setLigandInteractions. Default is True :type include_frames: bool """ filters = kwargs.pop('filters', None) include_frames = kwargs.pop('include_frames', True) filtered_lists = [] if filters != None: if include_frames == False: filtered_lists = [element for group in self._interactions_traj for element in group if filters in element] if include_frames == True: filtered_lists = [] for i in self._interactions_traj: filtered_lists.append([item for item in i if filters in item]) return filtered_lists else: return self._interactions_traj
[docs] def getAtoms(self): """Returns associated atoms.""" return self._atoms
[docs] def setLigandInteractions(self, atoms, interaction): """Replace protein-ligand interactions for example byb using getLigandInteractions() with filters to select particular ligand. :arg atoms: an Atomic object from which residues are selected :type atoms: :class:`.Atomic` :arg interactions: list of interactions :type interactions: list """ self._interactions_traj = interaction self._atoms = atoms LOGGER.info('Protein-ligand interactions are replaced.')
[docs] def getLigandInteractionsNumber(self, **kwargs): """Return the number of interactions per each frame. Number of interactions can be a total number of interactions or it can be divided into interaction types. :arg types: Interaction types can be included (True) or not (False). Default is True. :type types: bool """ types = kwargs.pop('types', True) if types == True: interactions = self._interactions_traj unique_keywords = set() for sublist in interactions: for sublist_item in sublist: keyword = sublist_item[0] unique_keywords.add(keyword) unique_keywords_list = list(unique_keywords) keyword_counts = {keyword: [0] * len(interactions) for keyword in unique_keywords_list} for i, sublist in enumerate(interactions): for sublist_item in sublist: keyword = sublist_item[0] keyword_counts[keyword][i] += 1 return keyword_counts else: return self._interactions_nb_traj
[docs] def parseLigandInteractions(self, filename): """Import interactions from analysis of trajectory which was saved via calcLigandInteractionsTrajectory(). :arg filename: Name of pkl file in which interactions will be storage :type filename: pkl """ import pickle with open(filename, 'rb') as f: data = pickle.load(f) self._interactions_traj = data self._interactions_nb_traj = [[len(sublist) if sublist else 0 for sublist in sublist] for sublist in data] return data
[docs] def getInteractionTypes(self): """Show which interaction types were detected for ligands.""" interactions = self._interactions_traj unique_keywords = set() for sublist in interactions: for sublist_item in sublist: keyword = sublist_item[0] unique_keywords.add(keyword) unique_keywords_list = list(unique_keywords) LOGGER.info("Interaction types: {0}".format(unique_keywords_list)) return unique_keywords_list
[docs] def getLigandsNames(self): """Show which ligands are in a system.""" interactions = self._interactions_traj ligands = set() for sublist in interactions: for sublist_item in sublist: keyword = sublist_item[4] ligands.add(keyword) ligands_list = list(ligands) return ligands_list
[docs] def calcFrequentInteractors(self, **kwargs): """Returns a dictonary with residues involved in the interaction with ligand and their number of counts. :arg selection: selection string of ligand with chain ID e.g. "MESA" where MES is ligand resname and A is chain ID. Selection pointed as None will return all interactions together without ligands separation. :type selection: str """ atoms = self._atoms interactions = self._interactions_traj selection = kwargs.pop('selection', None) from collections import Counter if selection == None: # Compute all interactions without distinguishing ligands all_residues = [ j[1]+j[3] for i in interactions for j in i ] dictOfInteractions = Counter(all_residues) else: interactions2 = [element for group in interactions for element in group] ligs = {} dictOfInteractions = [] for i in interactions2: ligs_names = i[4]+i[6] if ligs_names not in ligs: ligs[ligs_names] = [] res_name = i[1]+i[3] ligs[ligs_names].append(res_name) for i in ligs.keys(): if selection == None: LOGGER.info('LIGAND: {0}'.format(i)) aa_counter = Counter(ligs[i]) dictOfInteractions.append(aa_counter) else: if selection not in ligs.keys(): LOGGER.info('Wrong selection. Please provide ligand name with chain ID.') if i == selection: LOGGER.info('LIGAND: {0}'.format(selection)) aa_counter = Counter(ligs[selection]) dictOfInteractions.append(aa_counter) self._freq_interactors = dictOfInteractions return dictOfInteractions
[docs] def saveInteractionsPDB(self, **kwargs): """Save the number of interactions with ligand to PDB file in occupancy column It will recognize the chains. If the system will contain one chain and many segments the PDB file will not be created in a correct way. :arg filename: name of the PDB file which will be saved for visualization, it will contain the results in occupancy column. :type filename: str :arg ligand_sele: ligand selection, Default is 'all not (protein or water or ion)'. :type ligand_sele: str """ if self._freq_interactors is None: raise ValueError('Please calculate frequent interactors using getFrequentInteractors.') atoms = self._atoms dictOfInteractions = self._freq_interactors ligand_sele = kwargs.pop('ligand_sele', 'all not (protein or water or ion)') chids_list = np.unique(atoms.getChids()) freq_contacts_list = [] for nr_chid, chid in enumerate(chids_list): atoms_chid = atoms.ca.select('protein and chain '+chid) freq_contacts_list_chids = np.zeros(atoms_chid.ca.numAtoms(), dtype=int) firstElement = atoms_chid.ca.getResnums()[0] dictOfInteractions_chids = dictOfInteractions[nr_chid] for k, v in dictOfInteractions_chids.items(): res_index = int(k[3:-1]) freq_contacts_list_chids[res_index - firstElement] = v freq_contacts_list.extend(freq_contacts_list_chids) freq_contacts_list = np.array(freq_contacts_list) from collections import Counter lista_ext = [] ligands = atoms.select(ligand_sele) atoms = atoms.select("protein and noh") ligand_occupancy = np.zeros(len(ligands.getResnums())) aa_counter = Counter(atoms.getResindices()) calphas = atoms.select('name CA') for i in range(calphas.numAtoms()): # in PDB values are normalized to 100 (max value) lista_ext.extend(list(aa_counter.values())[i]*[round((freq_contacts_list[i]/np.max(freq_contacts_list)*100), 8)]) lista_ext.extend(ligand_occupancy) kw = {'occupancy': lista_ext} if 'filename' in kwargs: writePDB(kwargs['filename'], atoms+ligands, **kw) LOGGER.info('PDB file saved.') else: writePDB('filename', atoms+ligands, **kw) LOGGER.info('PDB file saved.') return freq_contacts_list